The Texas A&M University-Corpus Christi

TAMU-CC Safety Manual is hereby approved. This manual is effective immediately and supersedes all previous editions.

Dr. Flavius Killebrew, University President

Mr. Terry Tatum, Executive Vice President for Finance & Administration

Date
Texas A&M University-Corpus Christi is committed to a safe and healthy campus environment. This commitment comes from the highest level of the institution as indicated by the Safety Policy provided below and signed by the President of Texas A&M University-Corpus Christi.

Texas A&M University-Corpus Christi Safety Policy

Texas A&M University-Corpus Christi is committed to conducting all educational, research, service, and campus activities safely and in a manner that protects the health of students, faculty, staff and the public. Our human capital is our greatest asset and resource; therefore we must establish goals that reflect this concern for the campus community. Our goal for accidents and lost-time injuries is zero. Though we may never achieve this goal, we must continuously strive to prevent accidents and injuries.

As the Chief Executive Officer for the Institution, safety begins with the President and extends to all of us. Each member of the Islander family, whether faculty, staff, or student, is responsible and accountable for understanding and applying appropriate safety practices and procedures for his or her own protection and the protection of others. Safety is a condition of employment for all employees and an expectation of each of our students and residents.

Safety must be more than just a topic of discussion on our campus; it must become a core value of our teaching, research, and service enterprise. We must strive to create a safety culture that is characterized and recognized by ourselves and our peers as excellent. Safety is the business and responsibility of every campus citizen and we must each perform our part in order that we can all be successful. **For example:**

- **Students** must wear appropriate safety equipment and follow prescribed protocols while in the laboratory, studio, shop and clinic environment;
- **Faculty** must strive to create learning and research environments where safety is expected and valued; and
- **Staff** must help provide and maintain a safe campus environment and establish work rules and practices that follow recognized safety standards.
EMERGENCY PHONE NUMBERS

Dialing from an On-Campus Phone

Emergency Assistance
911

Dialing from a Cell Phone or an off campus phone

911
University Police
361-825-4444
University Health Center
361-825-2601
Facilities Services
361-825-2324
Poison Control
800-222-1222
Poison Non-Emergency
361-886-2600
TABLE OF CONTENTS

I. INTRODUCTION .. 9

II. ACCIDENT REPORTING ... 11
 ACCIDENT REPORTING PROCEDURE .. 11

III. AMERICANS WITH DISABILITIES ACT ... 12

IV. ANIMALS ON CAMPUS ... 13

V. ASBESTOS .. 16

VI. BIOLOGICAL SAFETY .. 17
 BIOHAZARDOUS MATERIALS .. 17
 USAGE OF BIOHAZARDOUS MATERIALS .. 17
 BIOHAZARDOUS STORAGE ... 17
 HEPATITIS B VACCINATION PROGRAM .. 17

VII. BOATING SAFETY .. 18
 TEXAS WATER SAFETY ACT ... 18
 REQUIRED SAFETY EQUIPMENT ... 18
 BOATING REGULATION ... 19
 OPERATION OF YOUR BOAT ... 24
 HURRICANE OBSERVATIONS AND REGULATIONS ... 25
 EQUIPMENT REQUIREMENTS-SAFETY TIPS ... 28
 MARINE RATED PARTS .. 30
 AIDS TO NAVIGATION-ROAD SIGNS OF THE WATERWAY .. 30
 SAFETY TIPS FOR TRAILERING YOUR BOAT ... 32
 BOATING PLAN ... 40

VIII. CONFINED SPACE .. 42
 POLICY ... 42
 REASON .. 42
 DEFINITION AND LOCATIONS ... 42
 EXAMPLES OF A CONFINED SPACE ... 43
 TRAINING ... 43

IX. CONSTRUCTION SAFETY ... 44
 GENERAL CONSTRUCTION GUIDELINES .. 44
 BARRIERS AND GUARDS .. 44
 HEAVY EQUIPMENT SAFETY ... 46
 FORKLIFTS ... 48
 BACKHOES ... 49
 HOISTS ... 49
 MOBILE CRANE SAFETY PROCEDURES ... 50
 FALL PROTECTION PROGRAM ... 51
 SCAFFOLDING ... 58
 TRENCHING ... 59
 CONTRACTOR, SUBCONTRACTOR AND VENDOR INFORMATION .. 63
X. Electrical Safety

- General Electrical Safety .. 68
- Definitions .. 68
- Circuit Breaker Loads .. 69
- Electrical Grounding .. 69
- Electrical Panels .. 70
- Electrical Safety Guidelines ... 70
- Electrical Emergency Response .. 71
- Control Hazardous Energy Lockout/Tag-out Procedures ... 72
- High Voltage Procedures .. 76
- Minimum Clear Working Space .. 77

XI. Environmental Management

- Environmental Management .. 78
- Spill Control Procedures .. 78

XII. Fire and Life Safety

- Program Requirements .. 80
- Applicable Codes and Standards .. 80
- Fire and Life Safety Program ... 80
- Appliances .. 81
- Arson ... 81
- Building Evacuation Plan/Drills .. 81
- Candles and Incense ... 83
- Combustible Storage .. 84
- Compressed Gas Cylinders ... 84
- Decorations ... 84
- Lithium-Ion/Polymer Batteries ... 85
- Electrical Safety .. 86
- Emergency Access and Egress .. 87
- Flammable and Combustible Liquids ... 88
- Fire Detection and Notification ... 89
- Fire Doors .. 90
- Fire Extinguishers .. 91
- Fire Hydrants .. 93
- Fire Lanes ... 93
- Fire and Life Safety Inspections ... 93
- Fire Prevention ... 94
- Fire Reporting ... 94
- Fire Suppression ... 95
- Liquid Petroleum Gas (LPG) .. 96
- Open Burning ... 97
- Pyrotechnics/Open Flames ... 98
- Tobacco Smoke and E-Vapor Free Environment ... 98
- Tents .. 98

XIII. Graphic Arts Media

- Graphic Arts Media .. 99
- Solvents ... 99
- Aerosol Sprays ... 100
- Acids and Alkalis .. 100
XXI. PERSONAL PROTECTIVE EQUIPMENT ... 211
 PERSONAL PROTECTIVE EQUIPMENT DEFINED ... 211
 APPROPRIATE APPAREL .. 211
 ARM AND HAND PROTECTION .. 211
 BODY PROTECTION ... 212
 EAR AND HEARING PROTECTION .. 212
 EYE AND FACE PROTECTION ... 213
 FOOT PROTECTION .. 214
 HEAD PROTECTION .. 215
 RESPIRATORY PROTECTION PROGRAM ... 215

XXII. RADIATION EMITTING DEVICES / LASER SAFETY 218
 RADIOLOGICAL SAFETY AT TAMU-CC ... 218
 MAGNETIC RESONANCE IMAGING .. 218
 RADIO FREQUENCY RADIATION .. 218

XXIII. SAFETY PROCEDURES FOR THE TRADES ... 219
 GENERAL SAFETY RULES .. 220
 WASHING WITH SOLVENTS ... 220
 PERSONAL PROTECTIVE EQUIPMENT ... 220
 ELECTRICAL SAFETY .. 220
 GROUND SAFETY ... 219
 STORAGE AND HOUSEKEEPING ... 224
 SHOP SAFETY .. 226
 MISCELLANEOUS OPERATIONS ... 245

XXIV. TOBACCO, SMOKE AND E-VAPOR FREE ENVIRONMENT 247
 UNIVERSITY POLICY ... 247

XXV. VEHICLE OPERATION .. 248
 GENERAL INFORMATION .. 248
 ACCIDENT REPORTING .. 249
 NON-MOTORIZED TRANSPORTATION DEVICES .. 250
 MOTOR POOL SAFETY ... 251
 TRANSPORTING EMPLOYEE AND STUDENTS ... 253
 UTILITY VEHICLE OPERATING PROCEDURES .. 254
 GENERAL VEHICLE SAFETY ... 256
 DEFENSIVE DRIVING ... 257
 BACKING VEHICLES ... 257
 RAILROAD CROSSINGS ... 257
I. **INTRODUCTION**

Texas A&M University-Corpus Christi (TAMU-CC) Environmental Health & Safety (E,H&S) is responsible for managing safety and health programs for Texas A&M University-Corpus Christi. The overall objective is to maximize the safety and health of employees, students and visitors.

Programs and services provided by TAMU-CC Environmental Health & Safety include the following:

- A staff person is assigned “ON CALL” rotation after hours, weekends and holidays.
- Monitor safety regulations.
- Develop policies and/or protocols concerning safety, health and environmental issues.
- Disseminate information concerning safety regulations, policies, and protocols.
- Submit reports and other required documentation to pertinent state agencies.
- Evaluate facilities to maintain safe work environments.
- Inspect safety equipment such as fire extinguishers and fume hoods.
- Report results of evaluations, tests, etc., along with recommended corrective measures to appropriate personnel for action.
- Dispose of hazardous waste.
- Review construction plans for compliance with codes and standards.
- Respond to emergencies such as fires or chemical spills.
- Measure environmental parameters such as vapors or noise.
- Provide safety-related training.
- Evaluate injury reports for accident trends and perform investigations as appropriate.
- Maintain Safety Data Sheets (SDS) as an information resource on hazardous materials.
- Assist with emergency preparedness planning for major disasters and coordinate University plans with the local community.
- Assist departments in the development of Emergency Evacuation Plans.
- Participate in safety committees and task forces.
- Maintain a library of safety audiovisual programs and relevant safety regulations and nationally recognized codes and standards.
1.0 FACULTY, STAFF AND STUDENTS

1.1 All University faculty, staff and students are responsible for the following:

▪ Performing their jobs in the safest prescribed manner.
▪ Eliminating and/or reporting workplace hazards.
▪ Reporting accidents, incidents, and unsafe practices or conditions to supervisors.
▪ Complying with environmental, health, and safety policies and protocols.

2.0 TAMU-CC ADMINISTRATION

2.1 The TAMU-CC Administration is responsible for the following:

▪ Providing the facilities and equipment required for a safe work environment.
▪ Reviewing and approving health and safety policies and protocols.
▪ Correcting safety deficiencies by establishing priorities and committing resources, as appropriate.
▪ Making “working safely” a condition of employment.

3.0 SUPERVISORS, DEPARTMENT HEADS, AND DIRECTORS

3.1 Supervisors, Department Heads, and Directors are responsible for the following:

▪ Promoting safety and loss prevention.
▪ Eliminating or controlling occupational hazards.
▪ Periodically conducting safety and loss control evaluations.
▪ Ensuring that employees are adequately trained in safety policies and protocols.
▪ Ensuring that employees are provided with appropriate personal protective clothing and equipment for safe job performance.
▪ Perform accident investigation, as necessary.

4.0 TAMU-CC SAFETY MANUAL

4.1 Has been developed by TAMU-CC Environmental, Health & Safety as a reference manual. It describes programs, practices, and procedures to be followed to help ensure a safe and healthy environment. It is the intent of the University to comply with all relevant occupational and environmental regulations and nationally recognized codes and standards. Using the manual’s protocols will complement responsible efforts to foster safe work habits and to maintain safe work environments.
II. ACCIDENT REPORTING

1.0 ACCIDENT REPORTING PROCEDURE

For safety reasons all accidents involving students, visitors, tenants, contractors and employees should be reported regardless of severity to the University Police Department (UPD) at ext. 4444. Medical emergency matters will be handled by the UPD. When accidents are reported promptly, injured employees, students and visitors receive timely Medical care and unsafe conditions receive prompt corrective actions. Report unsafe conditions or potentially hazardous situations to Environmental, Health & Safety at ext. 5555 as quickly as possible.

Employees must report accidents to their supervisor who will complete the Employer’s First Report of Injury or Illness Form. To access the form: https://hr.tamucc.edu/assets/WCI/Reports_Injury.pdf.

Visitors, Students, Tenants and/or non TAMU-CC Employees should complete the Incident/Injury Report Form for Non-TAMU-CC Employees. Submit this form to E, H&S, NRC Building, Suite 1100, Unit 5876. To access the form: http://safety.tamucc.edu/S/Forms/Forms.html.

University owned vehicle or utility cart accidents, single or multiple, require an employee to complete Motor Vehicle Accident Report (System Form 9) http://safety.tamucc.edu/S/Forms/Forms.html when a university owned vehicle or cart is involved in the accident. If an employee is injured report to supervisor and complete the Employer’s First Report of Injury or Illness Form 1. An injury to a non-TAMU-CC employee, complete the Incident/Injury Report Form for Non-TAMU-CC Employees. http://safety.tamucc.edu/S/Forms/Forms.html

Boating Accident:
1. Contact the U.S. Coast Guard on VHS 16 or the USCG Marine Safety Marine emergency 361-937-1898.
2. Report the accident to UPD at 361-825-4444.
3. Notify your supervisor.
4. Complete the appropriate accident form for either a TAMU-CC or Non-TAMU-CC employee.

Operator of a University vessel involved in any collision, accident or other casualty that results in death or injury to any person or property damage exceeding $500 must file a complete report of the accident within 30 days with the Texas Parks and Wildlife Department. Texas Parks and Wildlife accident form link: http://www.tpwd.state.tx.us/fishboat/boat/responsible/accident_reports

A university vehicle should not be used to transport an injured person to a hospital or a minor emergency clinic.
III. AMERICANS WITH DISABILITIES

1.0 AMERICANS WITH DISABILITIES ACT (ADA)

1.1 Within the standards required by the ADA, TAMU-CC makes reasonable accommodations for persons with physical disabilities so that they may more fully participate in programs and the benefits of employment. Safety is an important consideration in providing accommodations.

1.2 Elevators, automated door openers, lifts, ramps, etc., facilitate access. Sometimes this equipment becomes damaged or does not function properly. Please promptly notify Facilities Services for equipment repair. http://facilities.tamucc.edu

1.3 Handicap parking, sidewalks, wheelchair ramps, and building entrance areas may become blocked or congested with illegally parked bicycles, vehicles, or campus construction. Please contact UPD to report bicycle or vehicle related safety concerns http://police.tamucc.edu. For construction related issues, please contact Facilities Services.

1.4 Many classrooms are equipped with wheelchair accessible desks or tables, sometimes with chairs that can be removed or replaced as needed. Wheelchairs or removable chairs that block aisles and exits create an unacceptable hazard. Please report instances to the person presenting the class or to Environmental, Health and Safety. http://safety.tamucc.edu

1.5 Braille signage assists persons with visual disabilities to locate elevators, stairs, exits, classrooms, laboratories, restrooms, etc. The absence of signage could pose a safety issue if a person is not able to locate a specific area, e.g., an emergency exit, or inadvertently enters an inappropriate area. Contact Disabilities Services regarding Braille signage needs. Facilities Services prepares and installs Braille signage. http://disabilityservices.tamucc.edu

1.6 Refer to the Quick Reference Guide to Campus Emergencies for assisting persons with physical disabilities to safely vacate the building and for the locations of the Evac-U-Tracs (an emergency evacuation device, chair). http://safety.tamucc.edu/uploads/Site/finalbooklet.pdf

1.7 Evac-U-Trac evacuation chairs are located in the Universities multistoried academic, administrative and auxiliary building. For a list of locations go to http://safety.tamucc.edu.
IV. ANIMALS ON CAMPUS

1.0 ANIMALS ON CAMPUS

Pets and other animals are restricted at TAMU-CC facilities, grounds, and parking areas. This restriction supports the University Rule 41.01.99.C1: Use of University Facilities and the University's efforts to provide a safe work, learning, and research environment. It also helps minimize the health risks and concerns of members of the campus community and aids the maintenance, appearance, and cleanliness of campus facilities.

This policy applies to all animals not related to academics and research on any TAMU-CC grounds or in any facility controlled by the university.

This policy excludes:
- Law enforcement K-9 and equestrian units
- Animals used as an accommodation under law

Other exemptions that may be made under special circumstances, including housing

1.1 Definitions

- **Service Animal**: An animal trained to perform tasks for an individual with a disability. The tasks may include, but are not limited to, guiding a person who is visually impaired or blind, alerting a person who is deaf or hard of hearing, pulling a wheelchair, assisting with mobility or balance, alerting and protecting a person who is having a seizure, retrieving objects, or performing other special tasks. A service animal is not a pet.

- **Stray Animal**: Any domestic animal on campus that is not under physical restraint, i.e., leashed or caged, whether accompanied by a person or not.

- **Feral Animal**: A once-domesticated animal that has reverted to an untamed state.

- **Wild Animal**: A non-domesticated animal living in its natural habitat.

- **Therapy Animal**: An animal trained to achieve specific physical, social, cognitive and emotional goals with individuals.

1.2 General Provisions

- An animal must be under physical restraint to be allowed on campus. Specific policies may apply during special events such as concerts, athletics events, and guest speakers.

- Animals are not allowed in university buildings, with the exception of service animals and functions approved to include animals. Service animals must be
permitted to accompany people with disabilities in all areas where university
events and activities occur. Restrictions may be placed on locations and
activities where emotional support animals are permitted. The owner of the
animal is responsible for the care and supervision of the animal (including
removal of excrement), as well as for any damage or injury caused by the
animal while on university property. The university may ask a person with a
service animal what services the animal is trained to perform for the
individual to determine the difference between a service animal and a pet.

- The owner or responsible party must immediately remove and properly
dispose of fecal matter deposited by any animal brought to campus.

- An individual who brings an animal onto university property or property
controlled by the university will be responsible for damage or injury caused
by that animal. If an animal disrupts the campus educational process,
administrative process, or other campus function, the owner or responsible
party must remove the animal immediately.

- An animal left unattended in a vehicle or other area that is perceived to be in
distress is to be reported to the University Police Department (UPD) for
appropriate response. A person who leaves an animal unattended may be
prosecuted. Any animal found unattended in or on any campus facility may be
impounded. Owners of an impounded animal will be held responsible for
payment of any impoundment and/or license fees required to secure the
release of their animal.

- The abandonment of animals on any TAMU-CC property is strictly forbidden.

- The owner or responsible party who wishes to bring an animal on campus
for a one-time display is required to comply with university regulations and
that follow the appropriate protocol for approval prior to bringing the animal
on campus. This approval may require a certificate of insurance and animal
health certificates. The owner or responsible party will be liable for any
damage caused by the animal while on campus. For additional information,
please contact Administrative Services 825-2183.

- It is the responsibility of the Facility Services Grounds to collect and dispose
of dead animals. To report a dead animal, call the Facility Services Department
at 825-2324.

- Animals may be exercised or walked on campus paths and must be on leash at
all times.

- **University Housing** - Service animals are permitted in university housing. Fish
in a 15 gallon or less tank are permitted in university housing as pets. Professional residents are permitted to have a non-aggressive breed dog or a
cat.
1.3 **Wild or Feral Animals**

- Wild or feral animals will be left alone if no immediate threat to human safety or property is evident. If an animal is exhibiting dangerous or destructive behavior or posing an immediate threat, UPD must be notified immediately. UPD will monitor the animal until another appropriate party is contacted and arrives on the scene. If the animal is deemed a threat and immediate intervention is required, UPD may elect to remove the threat.

- **Feeding of Wildlife or Feral Animals on University Property**
 Individuals are discouraged from feeding wild and feral animals. This shall specifically apply to domesticated or feral cats, raccoons, opossums, skunks, squirrels, and any or all of the fauna which occur either naturally or unnaturally on the TAMUCC campus. This shall not apply to food left out as bait for purposes of capturing or attracting animals for animal control or for educational purposes as approved and monitored for research purposes.

1.4 **Stray Animals**

- Stray animals should be reported immediately to the University Police Department. Stray animals on campus grounds or in buildings will be turned over to local animal services.

- **Unauthorized Tampering of Animal Traps**
 Any person who vandalizes, removes, or causes to deactivate an animal trap that has been set by the University Police or Facilities Services, will be in violation of this procedure and will be responsible for replacement costs, and/or subject to disciplinary action.
V. ASBESTOS

1.0 ASBESTOS

1.1 Asbestos is a mineral fiber that causes cancer and various respiratory illnesses. Older buildings constructed prior to 1980 may contain asbestos. Asbestos is commonly found in older appliances, insulation, shingles, siding, putties, and caulking. Generally, it is not a problem unless the material that contains it crumbles or flakes.

1.2 *NOTE:* Call Facilities Services before performing work on campus that will disturb building fixtures, walls, or ceiling (e.g., installing computer cables in the ceiling). Facilities Services will help ensure that the work does not affect asbestos containing materials.

1.3 *IMPORTANT:* Do not handle asbestos or suspected asbestos or try to remove it yourself.

1.4 TAMU-CC has an ongoing Asbestos Management Program that strives to eliminate or control the potential hazards associated with asbestos and lead paint. A copy of the TAMU-CC Asbestos Management Program is available from Environmental, Health & Safety. Facilities Services handles contracts for consultation and/or abatement. Direct any questions about identifying or removing asbestos to Facilities Services. Address any safety-related questions to Environmental, Health & Safety. The TAMU-CC Asbestos/Lead Paint Plan is located at http://safety.tamucc.edu/h/health.htm.
VI. BIOLOGICAL SAFETY

The Biological Safety Program is managed by each department, the Institutional BioSafety Committee (IBC), and the Environmental, Health & Safety Department. Guidance documents, requirements, and training sessions are offered and should be consulted when employees or students work with or have the potential to come in contact with bio hazardous materials.

1.0 BIO HAZARDOUS MATERIALS

Bio hazardous materials are potentially hazardous biological agents and include the following:

- Etiologic agents which may cause disease in humans, animals or plants (including bacterial, fungal, parasitic, rickettsial, viral, and prion disease agents).
- Human body fluids or tissues (e.g. blood borne pathogens) including human cell culture (primary or continuous).
- Agents and molecules involved with recombinant DNA biotechnology and genetic manipulation (including recombinant / transgenic agents including plants, animals, as well as pathogenic and non-pathogenic microorganism (eukaryotic and prokaryotic).
- Animals infected with zoonosis.
- Items contaminated with etiologic agents or human body fluids or tissues.

2.0 USAGE OF BIO HAZARDOUS MATERIALS

Possession and use of bio hazardous materials for research requires prior approval by Texas A&M University-Corpus Christi’s Institutional Biosafety Committee (IBC).

3.0 BIO HAZARDOUS STORAGE

The University departments and E,H&S work together to ensure biosafety cabinets are certified annually or as needed; contact E,H&S to schedule a biosafety cabinet certification.

4.0 HEPATITIS B VACCINATION PROGRAM

All employees who have been identified as having an occupational exposure to blood or Other Potentially Infected Material (OPIM) are offered the Hepatitis B Vaccine (HBV) by the employer at no cost to the employee.
VII. BOATING SAFETY

The goal of the TAMU-CC Boating Safety Program is to ensure the safety and well-being of marine operators, passengers and equipment through compliance with the Texas Water Safety Act and United States Coast Guard boating regulations. http://safety.tamucc.edu/uploads/Site/BoatingPlan.doc

1.0 TEXAS WATER SAFETY ACT

Texas Registration and Title: All motorboats and all sailboats 14 feet in length or longer operated on public waters or docked, moored, or stored on public water must be currently registered, properly displaying authorized numbers and validation decal, and titled. All outboard motors must be titled.

Exemptions: All canoes, kayaks, punts, rowboats or rubber rafts (regardless of length) when paddled, poled, or oared and sailboats under 14 feet in length when windblown.

1.1 Texas Certificate of Number
When operating a vessel required to be registered, the certificate of number (registration) or facsimile thereof must always be aboard and available for inspection by an enforcement officer. The certificate is valid until the expiration date shown thereon. When renewing certificate, the same number shall be reissued if the application is made within the 90 day period preceding the expiration date.

1.2 Display of Your Number
The number awarded a vessel must be painted on, or otherwise attached to each side of the vessel, near the bow, in such position as to provide easy identification. The number shall read from left to right, be in block characters of good proportion not less than three inches in height and be of a color that contrasts with the background. The numerals must be separated from the prefix and the suffix by hyphens or equivalent spaces such as the following example: TX 0123 AB and TX-0123-AB. Federal and State law prohibits any other number from being displayed on either side of the bow of the boat.

2.0 REQUIRED SAFETY EQUIPMENT

No person may operate or give permission for the operation of a vessel that is not provided with the equipment required by the Texas Water Safety Act and the TAMU-CC Safety Policy.

2.1 Lifesaving Devices
All Personal Floatation Devices (PFD’s) must be U.S. Coast Guard approved, in serviceable condition, readily accessible, and of the appropriate size for intended user.
University employees/students and their passengers must wear a PFD while the vessel is underway. Underway means not at anchor, made fast to the shore or aground.

Vessels 16 feet and longer, excluding canoes and kayaks, are required to be equipped with one Type IV throwable Personal Flotation Device in addition to the Type I, II, III or V PFD required for each person on board.

2.2 Sound Producing Devices
Any vessel less than 12 meters in length is required to carry some means to make an efficient sound to signal intentions or position in periods of reduced visibility. Vessels 12 meters (39.4 ft.) or more in length are required to carry on board a whistle or horn, and a bell.

3.0 BOATING REGULATIONS

3.1 Inspection of Vessels
In order to enforce the provisions of the Water Safety Act, game wardens and other peace officers certified as marine safety enforcement officers by the Texas Parks and Wildlife Service may stop, board and inspect any vessel to determine compliance with applicable provisions.

3.2 Accidents and Casualties
Operators of vessels involved in any collision, accident or other casualty that result in death, injury or property damage exceeding $500 must file a complete report of the accident within 30 days in accordance with Texas Parks and Wildlife regulations. These accident reports are confidential and are not admissible in court as evidence. Report forms may be obtained from the Texas Parks and Wildlife offices, game wardens, or marine safety enforcement officers.

NOTE: Operators of University vessels involved in any collision, accident or other casualty that results in death, injury, or property damage must file an incident report with the University Environmental, Health and Safety Department. Incident forms are available at http://safety.tamucc.edu/Forms.html/.
Boating Accident Report
Texas Water Safety Act

"CONFIDENTIAL"
Operator's Report Not Admissible in Court as Evidence

The operator of every vessel is required to file a report in writing whenever a boating accident results in death or injury to any person or property damage in excess of $500. Reports must be submitted to Law Enforcement Division, Texas Parks and Wildlife Department (address above) within thirty (30) days from date of accident.

1. Incident/Accident Data
 - A. Date of Accident
 - B. Time
 - C. Name of Body of Water
 - D. Water Body Code
 - E. Location (area or GPS markings)
 - F. Nearest City or Town
 - G. County
 - H. County Code
 - I. State

2. Weather Conditions
 - A. Weather
 - B. Water Conditions
 - C. Temperatures
 - (estimate degree F)
 - D. Wind
 - None
 - Light (0-12mph)
 - Moderate (13-24mph)
 - Strong (25-54mph)
 - Storm (over 55mph)
 - E. Visibility
 - Good
 - Fair
 - Poor
 - None
 - Not as Expected
 - No Forecast
 - F. Weather Encountered
 - Was as Forecast
 - Not as Expected
 - No Forecast

3. Person Completing Report
 - A. Name
 - B. Address
 - C. Telephone
 - ()
 - D. Date Report Submitted
 - M.I.
 - E. Qualifications:
 - Operator
 - State
 - Owner
 - Other
 - Email (optional)

 *** Operator only report, Investigating Officers should complete Accident Investigation Report (PWD 047-L2000) ***

4. In your opinion, what caused the accident? (check all that may apply)
 - Unknown
 - Alcohol Use
 - Careless/Reckless Operation
 - Congested Waters
 - Drug Use
 - Fault of Equipment
 - Fault of Machinery
 - Fault of Hull
 - Hazardous Waters
 - Ignition of Spilled Fuels or Vapors
 - Operator Inattention
 - Improper Anchoring
 - Improper Loading
 - Lack of Improper Boat Lights
 - Operator Inexperience
 - Overloading
 - Restricted Vision
 - Rules of the Road Violation
 - Sharp Turn
 - Standing, Sitting on Gunwale, Bow, or Transom
 - Starting in Gear
 - Wake
 - Weather Conditions
 - No Proper Lookout
 - Off-Throttle Steering
 - Navigation Aid Missing
 - Passenger/Skier Behavior
 - Lack Of/No Skier Lookout
 - Excessive Speed
 - Other:

5. NARRATIVE OF EVENTS
 Briefly describe what happened (Sequence of events. Include equipment or machinery failure. Draw a diagram on a separate sheet if it will help illustrate your meaning, labeling boats as Vessel #1, Vessel #2, etc.)

PWD 0311 – L2000 (10/10) PAGE 1
6. Vessel Information (Vessel #1)

<table>
<thead>
<tr>
<th>A. Boat Number (TX)</th>
<th>B. Boat Name</th>
<th>C. Boat Make</th>
<th>D. Boat Model</th>
<th>E. MFR. Hull Identification #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F. Type of Boat</th>
<th>G. Hull Material</th>
<th>H. Engine</th>
<th>I. Propulsion</th>
<th>J. Boat Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Boat</td>
<td>Fiberglass</td>
<td>Inboard</td>
<td>No. of Engines</td>
<td>Vessel Length</td>
</tr>
<tr>
<td>Auxiliary Sail</td>
<td>Aluminum</td>
<td>Outboard</td>
<td></td>
<td>Feet</td>
</tr>
<tr>
<td>Cabin Motorboat</td>
<td>Rubber/Vinyl/Canvas</td>
<td>Jet Drive</td>
<td></td>
<td>Inches</td>
</tr>
<tr>
<td>Canoe</td>
<td>Rigid Hull Inflatable</td>
<td>Inboard/Outboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houseboat</td>
<td>Plastic</td>
<td>Jet Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kayak</td>
<td>Wood</td>
<td>Inboard-Outdrive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet Boat</td>
<td>Steel</td>
<td>Other (Specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Motorboat</td>
<td>Other (Specify)</td>
<td>Rented Vessel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Watercraft</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontoon Boat</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowboat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sail (Only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I. Propulsion:</th>
<th>J. Boat Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Engines</td>
<td>Vessel Length:</td>
</tr>
<tr>
<td>Make</td>
<td>Feet</td>
</tr>
<tr>
<td>Horsepower (total)</td>
<td>Inches</td>
</tr>
<tr>
<td>Year Built</td>
<td></td>
</tr>
<tr>
<td>Type of Fuel:</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td></td>
</tr>
</tbody>
</table>

7. Operation at Time of Accident

- Commercial Activity
- At Anchor
- Cruising
- Docking/Undocking
- Drifting
- Fishing
- Fueling
- Hunting

8. Type of Accident

- Sailing
- Skin Diving
- Swimming
- Tubing
- Wake Boarding
- Other (Specify)
- Unknown
- Colliding
- Struck by Vessel
- Struck by Propeller or Propulsion Unit
- Struck Submerged Object
- Other (Specify)

9. Personal Flotation Devices (PFD)

1. Was the boat adequately equipped with CG approved life saving Devices?
 - Yes
 - No

2. Were they accessible?
 - Yes
 - No

3. Were they worn?
 - Yes
 - No

10. Fire Extinguishers

- Person Leaves Vessel
- Person Ejected From Vessel
- Sinking
- Skier Mishap
- Struck by Vessel
- Struck by Propeller or Propulsion Unit
- Struck Submerged Object
- Other (Specify)

11. Type of PFD

- I, II, III, IV, or V

12. Property Damage (estimate)

- This Boat $.
- Other Boat $.
- Other Property $.
- Description of Damages:

13. Identifying Information

- Name of Owner of Vessel
 - Last
 - First
 - M.I.
 - Address:
 - Street
 - City
 - State & Zip
 - Telephone:

- Name of Operator at time of Accident
 - Last
 - First
 - M.I.
 - Address:
 - Telephone:
 - Gender: [Female] [Male]

- Operators Experience:
 - This Type of Boat:
 - Under 10 hours
 - 10 to 100 hours
 - 100 to 500 hours
 - Over 500 hours
 - None
 - Other Boat Operating Experience:
 - Under 10 hours
 - 10 to 100 hours
 - 100 to 500 hours
 - Over 500 hours
 - None

- Formal Instruction in Boating Safety:
 - State Course
 - USCG Auxiliary
 - US Power Squadrons
 - Internet Course

- Not for Investigation Purpose / Statistical Purpose Only

- On Board, Prior To Accident, was Operator Using Alcohol?
 - Yes
 - No

- Was the Operator Wearing a Life Preserver?
 - Yes
 - No

- Used Safety Lanyard?
 - Yes
 - No

- [Image]
14. Other Vessel Information (Vessel # 2)

<table>
<thead>
<tr>
<th>A. Boat Number (TX)</th>
<th>B. Boat Name</th>
<th>C. Boat Make</th>
<th>D. Boat Model</th>
<th>E. MFR. Hull Identification #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F. Type of Boat</th>
<th>G. Hull Material</th>
<th>H. Engine</th>
<th>I. Propulsion</th>
<th>J. Boat Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Boat</td>
<td>Fiberglass</td>
<td>Inboard</td>
<td>No. of Engines</td>
<td>Vessel Length</td>
</tr>
<tr>
<td>Auxiliary Sail</td>
<td>Aluminum</td>
<td>Outboard</td>
<td></td>
<td>Feet</td>
</tr>
<tr>
<td>Cabin Motorboat</td>
<td>Rubber/Vinyl/Canvas</td>
<td>Inboard/Outboard</td>
<td>Make</td>
<td>Inches</td>
</tr>
<tr>
<td>Canoe</td>
<td>Plastic</td>
<td>Jet Drive</td>
<td></td>
<td>Width (Beam)</td>
</tr>
<tr>
<td>Houseboat</td>
<td>Wood</td>
<td>Inboard-Outdrive</td>
<td></td>
<td>Feet</td>
</tr>
<tr>
<td>Kayak</td>
<td>Steel</td>
<td>Other (Specify)</td>
<td></td>
<td>Inches</td>
</tr>
<tr>
<td>Jet Boat</td>
<td></td>
<td></td>
<td>Rented Vessel:</td>
<td></td>
</tr>
<tr>
<td>Open Motorboat</td>
<td>Other (Specify)</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Personal Watercraft</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>(PWC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontoon Boat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowboat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sail (Only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Operation at time of accident for this vessel.

<table>
<thead>
<tr>
<th>Commercial Activity</th>
<th>Sailing</th>
<th>Unknown</th>
<th>Grounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Anchor</td>
<td>Skiing</td>
<td>Capsizing</td>
<td>Person Leaves Vessel</td>
</tr>
<tr>
<td>Cruising</td>
<td>Skin Diving</td>
<td>Carbon Monoxide Exposure</td>
<td>Person Ejected From Vessel</td>
</tr>
<tr>
<td>Docking/Undocking</td>
<td>Swimming</td>
<td>Fixed/Floating Object Collision</td>
<td>Sinking</td>
</tr>
<tr>
<td>Drifting</td>
<td>Tubing</td>
<td>Vessel Collision</td>
<td>Skier Mishap</td>
</tr>
<tr>
<td>Fishing</td>
<td>Wake Boarding</td>
<td>Electrocution</td>
<td>Struck by Vessel</td>
</tr>
<tr>
<td>Fueling</td>
<td>Other (Specify)</td>
<td>Fall in Boat</td>
<td>Struck by Propeller or Propulsion Unit</td>
</tr>
<tr>
<td>Hunting</td>
<td></td>
<td>Falls Overboard</td>
<td>Struck Submerged Object</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire or Explosion</td>
<td>Other (Specify)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flooding/Swamping</td>
<td></td>
</tr>
</tbody>
</table>

16. Type of Accident for this vessel.

<table>
<thead>
<tr>
<th>1. Was the boat adequately equipped with CG approved life saving Devices?</th>
<th>1. Were there fire extinguishers on board?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

| 2. Were they accessible? | No |
| 3. Were they worn? | Yes |

17. Personal Flotation Devices (PFDs) for this vessel.

<table>
<thead>
<tr>
<th>10. Type of PFD</th>
<th>I, II, III, IV, or V</th>
<th>2. Were they used?</th>
<th>Yes</th>
<th>No</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

18. Property Damage (estimate) for this vessel.

<table>
<thead>
<tr>
<th>This Boat $</th>
<th>Description of Damages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Boat $</td>
<td></td>
</tr>
<tr>
<td>Other Property $</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of persons on board:</th>
<th>Number of persons being towed:</th>
</tr>
</thead>
</table>

19. Identifying Information for this vessel.

<table>
<thead>
<tr>
<th>Name of Owner of Vessel</th>
<th>Address:</th>
<th>Telephone:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last</td>
<td>Street</td>
<td>()</td>
</tr>
<tr>
<td>First</td>
<td>City</td>
<td>Date of Birth</td>
</tr>
<tr>
<td>M.I.</td>
<td>State & Zip</td>
<td>Gender:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Operator at time of Accident:</th>
<th>Address:</th>
<th>Telephone:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last</td>
<td>Street</td>
<td>()</td>
</tr>
<tr>
<td>First</td>
<td>City</td>
<td>Date of Birth</td>
</tr>
<tr>
<td>M.I.</td>
<td>State & Zip</td>
<td>Gender:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operators Experience:</th>
<th>Other Boat Operating Experience:</th>
<th>Formal Instruction in Boating Safety:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 10 hours</td>
<td>Under 10 hours</td>
<td>State Course</td>
</tr>
<tr>
<td>10 to 100 hours</td>
<td>10 to 100 hours</td>
<td>USCG Auxiliary</td>
</tr>
<tr>
<td>100 to 500 hours</td>
<td>100 to 500 hours</td>
<td>US Power Squadrions</td>
</tr>
<tr>
<td>Over 500 hours</td>
<td>Over 500 hours</td>
<td>Internet Course</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not for Investigation Purpose / Statistical Purpose Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On Board, Prior To Accident, was Operator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using Alcohol?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Was the Operator Wearing a Life Preserver?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BW Arrest?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

PW00311 – L2000 (10/10) PAGE 3
20. Injured Persons

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Telephone</th>
<th>Last</th>
<th>Street</th>
<th>City</th>
<th>Date of Birth</th>
<th>Gender</th>
<th>M.I.</th>
<th>State & Zip</th>
<th>Nature of Injuries: (brief description including location)</th>
<th>Injury caused by:</th>
<th>Did the injured receive treatment beyond first aid?</th>
<th>Was injured admitted to the hospital for treatment?</th>
<th>Alcohol Use Apparent?</th>
<th>Life Jacket Worn?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injured aboard: Vessel # 1 Vessel # 2 Neither</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Did the injured receive treatment beyond first aid?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Was injured admitted to the hospital for treatment?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Alcohol Use Apparent?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Life Jacket Worn?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

21. Witnesses and/or Passengers – Vessel # 1

<table>
<thead>
<tr>
<th>Name</th>
<th>DOB:</th>
<th>Gender</th>
<th>Address</th>
<th>Telephone</th>
<th>Passenger</th>
<th>Witness</th>
<th>PFD worn</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

22. Witnesses and/or Passengers – Vessel # 2

<table>
<thead>
<tr>
<th>Name</th>
<th>DOB:</th>
<th>Gender</th>
<th>Address</th>
<th>Telephone</th>
<th>Passenger</th>
<th>Witness</th>
<th>PFD worn</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Please submit completed forms to:
Texas Parks & Wildlife Department
Attn: Law Enforcement Division
4200 Smith School Road
Austin, Texas 78744

or email to: le.marine@tpwd.state.tx.us

PWD 0311 – L2000 (10/10) PAGE 4
3.3 **Stop and Render Aid**
The operator of any vessel involved in a boating accident must stop and render whatever assistance is necessary unless such action would endanger his own vessel, crew or passengers. The operator must give his name, address and vessel identification number in writing to any injured person and to the owner of any damaged property.

Failure to do so in an accident that results in death or serious bodily injury is punishable as a Parks and Wildlife Felony.

Failure to do so in an accident that does not result in death or serious bodily injury is punishable as a Parks and Wildlife Class A misdemeanor.

3.4 **Mandatory Boater Education Requirements**
A successfully completed Texas Parks and Wildlife certified boater education course and photo I.D. is required for any person born after September 1, 1984 to operate on the public water of this state a (1) vessel powered by motor of 10 horsepower or more; (2) a windblown vessel over 14 feet in length.

EXEMPTIONS: A person is exempt from the mandatory boater education requirement if the person (1) is at least 18 years of age; (2) is accompanied by a person at least 18 years of age who is exempt from the course or who has completed the course; (3) holds a master’s, mates, or operator’s license issued by the U.S. Coast Guard.

A University Field Techniques class is recommended for persons unfamiliar with marine operations.

4.0 **OPERATION OF YOUR BOAT**

It shall be unlawful for any person to:

4.1 Operate any motorboat or vessel at a rate of speed greater than is reasonable and prudent or greater than will permit him to bring such boat to a stop within the assured clear distance ahead.

4.2 Operate any motorboat so as to cause a hazardous wake or wash.

4.3 Operate any motorboat in a circular course around another boat whose occupant is fishing or around any person swimming.

4.4 Moor or attach any boat to any buoy, beacon, light marker, stake, flag or other aid to safe operation placed on the public waters of this State by proper authorities, or to move, remove, displace, tamper with, damage or destroy the same.

4.5 Anchor any boat in the traveled portion of any river or channel so as to prevent, impede, or interfere with safe passage of any other boat.

4.6 Operate a boat within an area designated as bathing, fishing, swimming, or otherwise restricted areas.
4.7 Operate a boat within an area designated as a “no wake” area except at headway speed without creating a swell or wake.

4.8 Operate a motorboat within 50 feet of a Diver Down Flag or operate a boat within 150 feet of a Diver Down Flag except at Headway/Steerage Speed.

4.9 Operating a University vessel under the influence of alcohol or a controlled substance is prohibited. No alcohol or controlled substances shall be permitted aboard a University vessel.

4.10 Fail to comply with the U.S. Coast Guard Inland Rules of the Road.

5.0 HURRICANE OBSERVATIONS AND PRECAUTIONS

Hurricanes are enormous cyclonic storm systems covering thousands of square miles which usually develop in the tropical or subtropical latitudes during the summer and fall. To be a hurricane, the system must be producing winds of 64 knots or more. Less intense storms are designated tropical depressions or tropical storms. Tropical storms and hurricanes are named to aid in identifying them. Each hurricane is, essentially, an organized system made up of hundreds of individual thunderstorms. The core of the hurricane is called the eye, an area of relatively benign weather several miles across surrounded by turmoil. All of the severe weather conditions produced by individual thunderstorms (heavy rain, hail, lightning, tornadoes, downbursts, etc.) are produced and magnified within the hurricane.

Working together, such storms generate tremendous tidal surges which can decimate coastal areas.

Historically, individual hurricanes have caused the loss of thousands of lives and billions of dollars in damage as they ran their course over populated areas. If you know a hurricane is approaching your area, prepare for the worst. The important point is, GET OFF THE OPEN WATER AS FAR AWAY FROM THE STORM AS POSSIBLE! If this is impossible, keep in mind that the right front quadrant of a hurricane usually, but not always produces the most violent weather.
With today's modern communication net to warn them, people have a better chance to reach safety before a hurricane hits their area. Even so, you may have little more than 24 hours advance notice to get your boat secured against the storm's full force.

5.1 **If your boat is easily trailer-able, store it ashore, far from the danger of high water. Follow these tips:**

- If you must move your boat, first inspect the trailer to ensure it is in proper operating condition. Check tires (including spare), wheel bearings, tow hitch and lights.
- If you can, put your boat and trailer in a garage. If they must be left out, secure them to strong trees or a "dead-man" anchor. Strip off everything that could be torn loose by a strong wind.
- Increase the weight of your trailered outboard boat by filling it with fresh water and leaving in the drain plug (inboard boats must be drained to avoid motor damage). Insert wood blocks between the trailer frame and the springs for extra support with the added weight.

5.2 **If your boat must stay in the water you have three options:**

- Berth at a dock which has sturdy pilings and offers reasonable shelter from open water and storm surge. Double up all mooring lines but provide enough slack so your boat can rise with the higher tides. Cover all lines with chafe protectors (double neoprene garden hose cut along the side) at points where the line is likely to wear and put out extra fenders and fender boards (the more the better).

- Anchor your boat in a protected harbor where the bottom can allow a good anchor hold. An advantage to anchoring is that the boat can more easily respond to wind and water changes without striking docks or other boats than when moored. Heavy and extra anchors are needed for this option and enough line should be on hand to allow a scope of at least 10:1 for each anchor.

- Hurricane Holes are ideal locations to moor your boat during a hurricane. These are deep, narrow coves or inlets that are surrounded by a number of sturdy trees which block the wind and provide a tie-off for anchor lines. The best location for a hurricane hole is one far enough inland to avoid the most severe winds and tides, yet close enough to reach under short notice. You may want to scout out a satisfactory hurricane hole ahead of time!
Remember:

- Never stay with your boat. Your boat should be stripped of anything that can become loose during the storm. This would include un-stepping the mast in sailboats. Boat documents, radios and other valuables should be removed from the vessel prior to the storm, since you never know how long it will take for you to get back to your boat once the storm passes.

- Hurricanes are among the most destructive phenomena of nature; their appearance is not to be taken lightly. Advance planning cannot guarantee that your boat will survive a hurricane safely or even survive at all. Planning can, however, improve survivability and is therefore certainly worth the time and money to do so.

5.3 General Weather Tips

- **Before Setting Out**

 - Obtain the latest available weather forecast for the boating area. Where they can be received, the NOAA Weather Radio continuous broadcasts (VHF-FM) are the best way to keep informed of expected weather and sea conditions. If you hear on the radio that warnings are in effect, don't venture out on the water unless confident your boat can be navigated safely under forecast conditions of wind and sea.

- **While Afloat**

 - Keep an eye out for the approach of dark, threatening clouds which may foretell a squall or thunderstorm.

 - Check radio weather broadcasts periodically for latest forecasts and warnings.

 - Heavy static on your AM radio may be an indication of nearby thunderstorm activity.

 - If a thunderstorm catches you afloat:

 ✓ Put on a Personal Flotation Device (if not already wearing one)

 ✓ Stay below deck if possible.

 ✓ Keep away from metal objects that are not grounded to the boat’s protection system.
6.0 EQUIPMENT REQUIREMENTS-SAFETY TIPS

6.1 Small Boats and Water Activities
Many hunters and anglers do not think of themselves as boaters, but use small semi-v hull vessels, flat-bottom jon boats or canoes to pursue their sports. These boats tend to be unstable and easily capsized. Capsizing, sinking, and falling overboard from small boats account for 70% of boating fatalities and these facts mean you must have a greater awareness of the boats limitations and the skill and knowledge to overcome them.

Standing in a small boat raises the center of gravity, often to the point of capsizing. Standing for any reason or even changing position in a small boat can be dangerous, as is sitting on the gunwales, seat backs or on a pedestal seat while underway. A wave or sudden turn may cause an occupant to fall overboard or the boat to capsize due to the raised center of gravity. Always when walking forwards or backwards in a boat walk along the backbone of the boat.

6.2 Staying Afloat
It is common belief that someone dressed in heavy clothing or waders will sink immediately if they fall overboard. This is not true. Air trapped in clothing provides considerable flotation, and bending the knees will trap air in waders, providing additional flotation. To stay afloat, remain calm, do not thrash about or try to remove clothing or footwear. This leads to exhaustion and increases the loss of air that keeps you afloat. Keep your knees bent, float on your back and paddle slowly to safety.

6.3 Cold Water Survival
- Sudden immersion in cold water can induce rapid, uncontrolled breathing, cardiac arrest, and other life threatening situations which can result in drowning. Wearing a PFD will help reduce this condition. If you must enter the water, button up your clothing, wear a PFD, cover your head if possible and enter the water slowly.

- Hypothermia is the loss of body heat and immersion in cold water accelerating the loss of heat. If your boat capsizes it will most likely float on or just below the surface of the water. Outboard powered vessels built after 1978 are designed to support you even if full of water or capsized. To reduce the effects of hypothermia get in or on the boat. Try to get as much of your body out of the water as possible. If you can't get in the boat a PFD will enable you to keep your head out of the water. This is very important because about 50% of body heat loss is from the head.

- It may be possible to revive a drowning victim who has been under water for considerable time and shows no signs of life. Numerous documented cases exist where victims have been resuscitated with no apparent harmful effects after long immersions. Start CPR immediately and get the victim to a hospital as quickly as possible.
Boating Safety is no accident. To build sound knowledge, proficiency and confidence, and to learn the keys to safe boating, take a boating safety course.

For more information on boating safety and boating courses, contact your State Boating Agency, Coast Guard District or call the Boating Safety Hotline (1-800-368-5647). For information on boating courses you can also call the Boat/US course line (1-800-336-2628) and in Virginia (1-800-245-2628).

6.4 **Vessel Condition**
The operator should assure that a vessel is in top operating condition and that there are no tripping hazards or sharp edges exposed. The vessel should be free of fire hazards and have clean bilges.

6.5 **Loading your Vessel**
Keep the load low and evenly distributed. Do not exceed the "U.S. Coast Guard Maximum Capacities" label. If there is no capacity label use the following formula to determine the maximum number of persons you can safely carry in calm weather:

\[
\text{People} = \frac{(\text{Length of Boat} \times \text{Width})}{15}
\]

Length is determined by measuring a straight line from the foremost to the aftermost part of the vessel, parallel to the centerline, exclusive of sheer. Bowsprits, rudders, outboard motors and similar fittings are not included in the measurement. This formula, however, is applicable only to mono hull boats less than 20ft in length.

6.6 **Anchoring**
To anchor, bring the bow into the wind or current and put the engine in neutral. When the vessel comes to a stop, lower, do not throw, the anchor over the bow. The anchor line should be 5 to 7 times the depth of water.

6.7 **Stern Anchoring**
Anchoring a small boat by the stern has caused many to capsize and sink. The transom is usually squared off and has less freeboard than the bow. In a current, the stern can be pulled under by the force of the water. The boat is also vulnerable to swamping by wave action. The weight of a motor, fuel tank, or other gear in the stern increases the risk. Do not anchor by the stern!!

6.8 **Fueling Precautions**
Fill portable tanks off the vessel. Close all hatches and other openings before fueling. Extinguish smoking materials. Turn off engine(s), all electrical equipment, radios, stoves and other appliances.
Wipe up any spilled fuel immediately. Open all hatches to air out the vessel. Run the blower for at least four minutes, and then check the bilges for fuel vapors before starting the engine. NEVER start the engine until all traces of fuel vapors are eliminated. Your nose is the best known vapor detector.

6.9 Fuel Management

Practice the "One-Third Rule" by using one-third of the fuel going out, one-third to get back and one-third in reserve.

7.0 MARINE RATED PARTS

Do not use Automotive Parts to replace such items as starters, distributors, alternators, generators, carburetors, fuel pumps, etc., because they are not ignition protected and could cause a fire or explosion.

8.0 AIDS TO NAVIGATION-ROAD SIGNS OF THE WATERWAY

Aids to Navigation are placed along coasts and navigable waters as guides to mark safe water and to assist mariners in determining their position in relation to land and hidden dangers. Each is used to provide specific information. Several aids to navigation are usually used together to form a local system that helps the mariner follow natural and improved channels. They also provide a continuous system of charted marks for coastal piloting.

8.1 Lateral Marks are buoys or beacons that indicate sides of a route to be followed. They follow the traditional 3R rule of "red, right, returning" when returning from seaward and proceeding toward the head of navigation. Along the coast this is generally considered moving southerly along the Atlantic, westerly along the Gulf and northerly along the Pacific. In the Great Lakes it is westerly and northerly, except on Lake Michigan where southerly movement is toward head of navigation system.

8.2 The Western River System varies from the standard system in that aids are not numbered. It contains crossing day marks that indicate where the river channel crosses from one bank to the other. Lights on green aids may be green or white and those on red aids may be red or white.
8.3 The U.S. Aids to Navigation System is intended for use with nautical charts. The meaning of a particular aid may not be clear unless the appropriate chart is consulted. Publications such as Light Lists and Coast Pilots contain additional, important information. Each Coast Guard District also publishes a Local Notice to Mariners reporting changes to and deficiencies in aids to navigation and other marine information. DO NOT rely on buoys alone to determine your position!

Conversion of Metric to U.S. Units

<table>
<thead>
<tr>
<th>Metric Measure</th>
<th>Feet in Decimals</th>
<th>Feet and Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Meters (M)</td>
<td>164.0 ft.</td>
<td>164' 1/2"</td>
</tr>
<tr>
<td>20 meters (M)</td>
<td>65.6 ft.</td>
<td>65' 7 1/2"</td>
</tr>
<tr>
<td>12 M</td>
<td>39.4 ft.</td>
<td>39' 4 1/2"</td>
</tr>
<tr>
<td>10 M</td>
<td>32.8 ft.</td>
<td>32' 9 3/4"</td>
</tr>
<tr>
<td>8 M</td>
<td>26.3 ft.</td>
<td>26' 3"</td>
</tr>
<tr>
<td>7 M</td>
<td>23.0 ft.</td>
<td>23' 11 1/2"</td>
</tr>
<tr>
<td>6 M</td>
<td>19.7 ft.</td>
<td>19' 8 1/4"</td>
</tr>
<tr>
<td>5 M</td>
<td>16.4 ft.</td>
<td>16' 4 3/4"</td>
</tr>
<tr>
<td>4 M</td>
<td>13.1 ft.</td>
<td>13' 1 1/2"</td>
</tr>
<tr>
<td>2.5 M</td>
<td>8.2 ft.</td>
<td>8' 2 1/2"</td>
</tr>
<tr>
<td>1 M</td>
<td>3.3 ft.</td>
<td>3' 3 1/3"</td>
</tr>
</tbody>
</table>
BE SAFE ON THE WATER...
Know the navigation rules, observe the courtesies of safe boating and

<table>
<thead>
<tr>
<th>KNOW...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your</td>
</tr>
<tr>
<td>Boat</td>
</tr>
<tr>
<td>The</td>
</tr>
<tr>
<td>Equipment on the boat</td>
</tr>
<tr>
<td>The</td>
</tr>
<tr>
<td>Safety devices and wear PFDs</td>
</tr>
<tr>
<td>About</td>
</tr>
<tr>
<td>Alcohol and other distress stressors</td>
</tr>
<tr>
<td>About</td>
</tr>
<tr>
<td>First aid and emergency procedures</td>
</tr>
<tr>
<td>The</td>
</tr>
<tr>
<td>Environment, area and weather.... BEFORE YOU GO!</td>
</tr>
</tbody>
</table>

9.0 SAFETY TIPS FOR TRAILERING YOUR BOAT

Choose the proper trailer for your boat. More damage can be done to a boat by the stresses of road travel than by normal operation. A boat hull is designed to be supported evenly by water. When transported on a trailer, your boat should be supported structurally as evenly across the hull as possible. This will allow for even distribution of the weight of the hull, engine and equipment. It should be long enough to support the whole length of the hull but short enough to allow the lower unit of the boats engine to extend freely.

9.1 Rollers and bolsters must be kept in good condition to prevent scratching and gouging of the hull.

9.2 Tie-downs and lower unit supports must be adjusted properly to prevent the boat from bouncing on the trailer. The bow eye on the boat should be secured with a rope, chain or turnbuckle in addition to the winch cable. Additional straps may be required across the beam of the boat.

9.3 The capacity of the trailer should be greater than the combined weight of the boat, motor, and equipment. The tow vehicle must be capable of handling the weight of the trailer, boat, equipment, as well as the weight of the passengers and equipment which will be carried inside.
This may require that the tow vehicle may need to be specially equipped with a (n):

- Engine of adequate power.
- Transmission designed for towing.
- Larger cooling systems for the engine and transmission.
- Heavy duty brakes.
- Load bearing hitch attached to the frame, not the bumper. (Check your vehicle owner’s manual for specific information.)

9.4 Check Before You Go Out On The Highway

- The tow ball and coupler are the same size and bolts with washers are tightly secured. (The vibration of road travel can loosen them.)
- The coupler is completely over the ball and the latching mechanism is locked.
- The trailer is loaded evenly from front to rear as well as side to side.

Too much weight on the hitch will cause the rear wheels of the tow vehicle to drag and may make steering more difficult.

Too much weight on the rear of the trailer will cause the trailer to "fishtail" and may reduce traction or even lift the rear wheels of the tow vehicle off the ground.

The safety chains are attached crisscrossing under the coupler to the frame of the tow vehicle. If the ball were to break, the trailer would follow in a straight line and prevent the coupler from dragging on the road.
- The lights on the trailer function properly.
- Check the brakes. On a level parking area roll forward and apply the brakes several times at increasing speeds to determine a safe stopping distance.
- The side view mirrors are large enough to provide an unobstructed rear view on both sides of the vehicle.
- Check tires (including spare) and wheel bearings. Improper inflation may cause difficulty in steering. The bearings should be inspected and greased after each use when trailer wheels are immersed in water (especially salt water).
- Make certain water from rain or cleaning has been removed from the boat. Water weighs approximately eight pounds per gallon and can add weight that will shift with the movement of the trailer.
- Safety chains must be on each trailer. Chain size $\geq \frac{3}{8}$”

9.5 **Towing Precautions**
- Allow more time to brake, accelerate, pass, and stop.
- Remember the turning radius is also much greater. Curbs and roadside barriers must be given a wide berth when negotiating corners.
- Prior to operating on the open road, practice turning, backing up, etc. on a level uncongested parking area.

9.6 **Pre-Launching Preparations**
For the courtesy of others and to prevent rushing, prepare your boat for launching away from the ramp.
- Check the boat to ensure no damage was caused by the trip.
- Raise the lower unit (remove supports) to proper height for launching so it will not hit bottom.
- Remove tie-downs and make sure the winch is properly attached to the bow eye and locked in position.
- Put the drain plug in securely.
- Disconnect the trailer lights to prevent shorting of electrical system or burning out a bulb.
- Attach a line to the bow and the stern of the boat so the boat cannot drift away after launching and it can be easily maneuvered to docking area.
- Visually inspect the launch ramp for hazards such as a steep drop off, slippery area and sharp objects.
- When everything has been double checked, proceed slowly to the ramp remembering that your boat is just resting on the trailer and attached only at the bow. The ideal situation is to have one person in the boat and one observer at the water’s edge to help guide the driver of the tow vehicle.
9.7 Launching

- Keep the rear wheels of the tow vehicle out of the water. This will generally keep the exhaust pipes out of the water. If the exhaust pipes become immersed in the water, the engine may stall.
- Set the parking brake and place tire chocks behind rear wheels.
- Make sure someone else on shore is holding the lines attached to the boat.
- Lower the motor and prepare to start the engine (after running blowers and checking for fuel leaks).
- Start the boat motor and make sure water is passing through the engine cooling system.
- Release the winch and disconnect the winch line from the bow when the boat operator is ready.
- At this point, the boat should be able to be launched with a light shove or by backing off the trailer under power. Finish loading your boat at a sufficient distance from the ramp so others may use it.

9.8 Retrieval

The steps for removing your boat from the water are basically the reverse of those taken to launch it. However, keep in mind certain conditions may exist during retrieval that did not exist during launching. As you approach the takeout ramp, take special care to note such factors as:

- Change in wind direction and/or velocity.
- Change in current and/or tide.
- Increase in boating traffic.
- Visibility, etc.
- First, unload the boat at dock or mooring if possible.
- Next, maneuver the boat carefully to the submerged trailer and raise the lower unit of the engine.
- Then, winch the boat onto the trailer and secure it.
- Finally, drive the trailer with boat aboard carefully out of the ramp to a designated parking area for cleanup, reloading, and an equipment safety check. Practice will make launch and retrieval a simple procedure. The best advice is to retrieve your boat cautiously with safety as your main concern.

9.9 Storage

Since your boat may be sitting on its trailer for quite some time before it is used again, it is important to store it properly. To avoid damage from sun and weather, cover the boat with a tarp. To remove weight from the wheels, put cinderblocks or wood beams under the tongue and all four corners of the trailer frame.
9.10 **Check List Reports**
Once every three months a semi-annual report is to be filled out for each individual boat.

9.11 **Comprehensive Checklist**

<table>
<thead>
<tr>
<th>Fire Extinguishers</th>
<th>Safety Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Do you have all required quantities and types of fire extinguishers?</td>
<td></td>
</tr>
<tr>
<td>- Have they been checked within the past year?</td>
<td></td>
</tr>
<tr>
<td>- Are serviceable units tagged by a licensed facility?</td>
<td></td>
</tr>
<tr>
<td>- Are units accessible?</td>
<td></td>
</tr>
<tr>
<td>- Is at least one accessible from the helm or cockpit?</td>
<td></td>
</tr>
<tr>
<td>- Are you and your crew familiar with their operation?</td>
<td></td>
</tr>
<tr>
<td>Lifelines or rails in good condition.</td>
<td></td>
</tr>
<tr>
<td>Stanchions or pulpit securely mounted.</td>
<td></td>
</tr>
<tr>
<td>Hardware tight and sealed at deck.</td>
<td></td>
</tr>
<tr>
<td>Grab rails secure and free of corrosion or snags that may catch your hands.</td>
<td></td>
</tr>
<tr>
<td>Non-skid surfaces free from accumulated dirt or excess wear.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel System</th>
<th>Ground Tackle</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Is the system properly grounded at the filter, tank, deck, pump, etc.?</td>
<td></td>
</tr>
<tr>
<td>- Is the fuel tank free from rust or contamination?</td>
<td></td>
</tr>
<tr>
<td>- No leaks from tank, hose or fittings.</td>
<td></td>
</tr>
<tr>
<td>- Hoses U.S.C.G. approved and free of cracking or stiffness with adequate slack to account for vibration.</td>
<td></td>
</tr>
<tr>
<td>- Is tank secured?</td>
<td></td>
</tr>
<tr>
<td>- Fuel shut-off valve on tank and at engine.</td>
<td></td>
</tr>
<tr>
<td>- Engine compartment and engine clean and free of oily rags or flammable materials.</td>
<td></td>
</tr>
<tr>
<td>- Blower switch at remote location.</td>
<td></td>
</tr>
<tr>
<td>- Is your fuel system protected from siphoning?</td>
<td></td>
</tr>
<tr>
<td>- At least two anchors on board.</td>
<td></td>
</tr>
<tr>
<td>- Anchor and rode adequate for your boat and bottom conditions.</td>
<td></td>
</tr>
<tr>
<td>- Tackle properly secured.</td>
<td></td>
</tr>
<tr>
<td>- Length of chain at anchor.</td>
<td></td>
</tr>
<tr>
<td>- Thimble on rode and safety wired shackles.</td>
<td></td>
</tr>
<tr>
<td>- Chafing gear at chocks for extended stays or storm conditions.</td>
<td></td>
</tr>
<tr>
<td>- Anchor stowed for quick accessibility.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stoves</th>
<th>Electrical System</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Labeled and designated for marine use.</td>
<td></td>
</tr>
<tr>
<td>- Properly ventilated to remove carbon-monoxide from cabin.</td>
<td></td>
</tr>
<tr>
<td>- Retainers or rails for pots and pans while underway.</td>
<td></td>
</tr>
<tr>
<td>- If built-in, properly insulated and free from combustible materials, CNG and LPG (propane).</td>
<td></td>
</tr>
<tr>
<td>- Stored in separate compartment from vessel's interior and engine room.</td>
<td></td>
</tr>
<tr>
<td>- Tightly secured shut-off valve at tank.</td>
<td></td>
</tr>
<tr>
<td>- Proper labeling and cautions in place at tank location.</td>
<td></td>
</tr>
<tr>
<td>- Hoses, lines and fittings of approved and inspected type.</td>
<td></td>
</tr>
<tr>
<td>- Compartment is ventilated overboard and below level of tank base.</td>
<td></td>
</tr>
<tr>
<td>- Wiring approved for marine applications.</td>
<td></td>
</tr>
<tr>
<td>- Is system neatly bundled and secured.</td>
<td></td>
</tr>
<tr>
<td>- Protected against chafing and strain.</td>
<td></td>
</tr>
<tr>
<td>- Adequate flex between bulkhead and engine connections.</td>
<td></td>
</tr>
<tr>
<td>- Clear of exhaust system and bilge.</td>
<td></td>
</tr>
<tr>
<td>- System is protected by circuit breakers or fuses.</td>
<td></td>
</tr>
<tr>
<td>- Grounds to Zincs if required.</td>
<td></td>
</tr>
<tr>
<td>- Wire terminals and connections sealed to prevent corrosion.</td>
<td></td>
</tr>
</tbody>
</table>
9.12 Pre-Departure Checklist
A Pre departure must be carried out before each individual boat is launched

Personal Flotation Devices (PFDs)
- Have at least one Coast Guard-approved device per passenger and a minimum of two on board.
- An additional throw able device is required if the vessel is more than 16 feet long.
- Explain the location and use of all PFDs to passengers and crew that may be new to the vessel.

Sound Producing Devices
- Have a horn capable of producing a four-second blast audible for at least 1/2 mile on board.
- If you use portable air horn, have a spare can of air or an alternate device.
- Attach a whistle to each PFD.

Lights and Shapes
- Have all navigation lights as required for your boat.
• Make sure all instrument lights are working.
• If you intend to engage in a recreational boating activity that requires a day-shape, have the required shapes.
• Have aboard a flashlight and spare batteries.

Distress Signals
• Make flares, day signals, etc., accessible and ensure they are stored in a dry location.
• Carry signals at all times even if not required by the Coast Guard.
• Inform the crew and passengers of their location and safety rules for proper usage.

Tools and Spares
• Carry a basic toolbox with tools appropriate for your boat.
• Carry a box of spares including fuel filter, light bulbs, head parts, through-hull plugs, etc.

Fuel and Oil
• Top off your fuel tanks.
• If you can't, have enough fuel to provide a reasonable margin of safety for your return.
• Check the engine oil and coolant levels.

Fire Extinguishers
• Carry at least one fire extinguisher and make sure it is accessible. Make sure you have at least the number required by Coast Guard rules.
• Check to be sure mounts are secure and functional before departure.
• Take the time to point out locations to passengers and crew.

Ventilation
• On any powered vessel or auxiliary powered sailboat, or vessels using LPG for cooking or heat, check that all interior spaces are well ventilated before departure.
• If fuel smells are detected before ventilating, check after running the blowers for several minutes before starting.
• If odor persists, shut down the engine and look for the source of the leak.

Bilges
• Check to be sure bilges are reasonably dry and that pumps are not running excessively.
• Clean up any spilled oil or waste in bilges to prevent overboard discharge.

Weather Forecast
• Always check the weather forecast before boating.
• Have a radio on board to receive weather updates.
Battery Care
- If you have a dual charging system, make sure the selector switch is in the proper position.
- Make sure the power is on to the entire vessel.
- Have aboard spare batteries for accessories such as your handheld radio, flashlight, portable navigational aid, etc.
- If the batteries are rechargeable, make sure they’re charged.

Docking and Anchoring Tips
- Have at least one anchor set up and bent-on to your anchor line.
- Carry two or three extra dock lines in case you encounter unusual conditions dockside.
- Visually inspect the lines you use for chafe or wear.
- Carry at least two fenders on-board for docking or towing if required.

Rules & Documentation
- Have the ship's papers, radio license, fishing permit, etc. on board.
- Have the chart or charts for the area you intend to cruise in, regardless of your level of local knowledge.

Content courtesy of BoatSafe.com
10.0 BOATING PLAN

When going on a boating trip, make sure that your supervisor has a complete description of your vessel as well as your departure and estimated time of arrival, where you are going to dock, and when you will be back. This will make identification easier should the need arise.

Also, you will need to notify UPD at x4444 or 361-825-4444 when you will leave.

File this plan with your departmental supervisor. Do not file this plan with the Coast Guard.

1. Name: __ Telephone No.: ________________________________

2. Description of Boat: ______________
 Type: ___________________ Color: ___________ Trim: ___________________
 Registration No.: ___________ Length: _______________________
 Name: __________________ Make: ____________________________
 Other Info: ___

3. Engine Type: ______________ H.P.: _____________________________
 No. of Engines: ___________ Fuel Capacity: ________________

4. Survival Equipment: (Circle as appropriate)

 PFDs Flares Mirror Smoke Signals
 Flashlight Food Paddles Water
 Others Anchor Raft or Dinghy EPIRB

5. Radio: Circle - Yes / No

 Type: __________________________
 Frequency: _____________________

6. Automobile License: __

 Type: ___________________ Trailer License: _______________________________
 Color: ______________ Make of Auto: ______________________________________
 Where Parked: __
7. No. of Persons Aboard: ___________________

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Address and Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Do you or any of the persons aboard have a medical problem? Circle Yes/No

If yes, what? __

9. Trip Expectations: Leave at __________________________ am/pm

From ___

Destination __

Expect to return by _____ am/pm and not later than _____ am/pm

10. Any other pertinent info: ______________________________________

__

11. If not returned by _____am/pm call the COAST GUARD, or the following authority:

__

12. Telephone Numbers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COAST GUARD** (361)937-1898 Marine and Air Emergency

Other authority ______________________

**Your local Coast Guard number can be found in the emergency section or blue section of your phone book.
VIII. CONFINED SPACE

1.0 POLICY

1.1 It is the policy of Texas A&M University-Corpus Christi (TAMU-CC) that any individual entering into a confined space on TAMU-CC property will do so in accordance with the procedures outlined in this Confined Space Program and 29CFR1910.146.

1.2 The purpose of this program is to identify, document, evaluate, and properly label all permit required confined spaces on the TAMU-CC campus, and to allow only trained and authorized personnel to enter such spaces.

1.3 This program also provides guidelines for all entries into confined spaces on TAMU-CC grounds and facilities, so that they can be accomplished in a safe and healthful manner.

2.0 REASON

2.1 Confined spaces can present unique and very dangerous safety situations to those that must enter.

2.2 By their definition, confined spaces can typically be difficult to enter and exit.

2.3 Confined spaces can also contain atmospheric gases and other hazards that make them particularly hazardous for personnel entry.

2.4 The Confined Space Program involves training, signage and safety equipment, as appropriate; to be sure that employees are vigilant in their work in and around confined spaces and do not inadvertently or innocently enter into a confined space. The potential for serious injury is high, thus it is important that TAMU-CC employees who may enter any confined space, work with their department and E,H&S to ensure that all necessary safety precautions are considered and taken.

3.0 DEFINITION AND LOCATIONS

3.1 A confined space is defined as:

- A space with the existence of all of the following conditions:
 - Large enough and so configured that an employee can bodily enter and perform assigned work. Has limited or restricted means for entry or exit.
 - Is not designed for continuous employee occupancy.
3.2 **Locations**

- TAMU-CC has undertaken the effort to identify and maintain a detailed listing that permanently identifies locations meeting the criteria for a confined space.

- In addition, TAMU-CC will identify and label Permit Required Confined Spaces (PRCS). Only appropriately trained individuals may enter PRCS.

- If you are unsure about whether you will be entering a confined space, you must **STOP** and contact your supervisor or E, H&S, before entering the area.

4.0 **EXAMPLES OF A CONFINED SPACE**

4.1 Some examples of confined spaces at TAMU-CC include manholes, boilers, tanks, vats, sewer pipelines, and vaults without existing general ventilation.

5.0 **TRAINING**

5.1 All employees that participate or have duties in the Confined Space Program will receive training to ensure that each individual has the understanding, knowledge and skills necessary to safely perform activities in the confined space.

5.2 The level of training will be in accordance with the Confined Space Program.
IX. CONSTRUCTION SAFETY

1.0 GENERAL CONSTRUCTION GUIDELINES

1.1 Construction work can be particularly hazardous. Personal protective equipment, fire safety, electrical safety, confined space entry, emergency preparedness, biological safety, chemical safety, hazardous waste disposal, vehicle safety and other precautions are essential for safe construction work. Refer to other chapters in this manual for more information. Follow these guidelines when visiting or working at construction sites:

- do not walk, stand, or work under suspended loads. If you raise a load, be sure to crib, block, or otherwise secure the load as soon as possible.
- Avoid placing unusual strain on equipment or materials.

1.2 Be prepared for unexpected hazards. **BE ALERT!**

2.0 BARRIERS AND GUARDS

2.1 Barriers and guards are necessary to protect employees, students, contractors, and visitors from physical hazards. If you suspect a hazard is not sufficiently protected, notify Facilities Services at 361-825-2324 or Environmental, Health & Safety at 361-825-5555 immediately.

NOTE: Barriers, guards, and warning signs are required to ensure safety against existing hazards.

2.2 Standard types of barriers and guards include the following:

- Guardrails and handholds
- Saw horses
- Tape
- Toe boards
- Cones
- Other physical barriers and solid separators (dust barriers, hazard barriers, temporary walkways, etc.)

NOTE: Signs that state DANGER, WARNING, or CAUTION are also important when barriers or guards are necessary. Remember to make signs legible, visible, and brief.
2.3 **Areas that need barriers and guards**

Any area that poses a physical threat to workers and/or pedestrians requires barriers or guards. Areas that typically require permanent or temporary protection include the following:

- Stairways
- Hatches
- Chutes
- Open Manholes
- Elevated platforms
- Areas with moving machinery
- Excavation sites
- Construction sites
- Temporary wall or floor openings

2.4 **Using barriers and guards**

- When necessary, reroute pedestrian and vehicular traffic to completely avoid a construction site.
- Guard any ground opening into which a person could fall with a guardrail, load-bearing cover, or other physical barrier.
- Ensure that temporary floor openings, such as pits and open manholes, are guarded by secure, removable guardrails. If guardrails are not available, have someone guard the opening.
- Ensure that all stairways, ladder ways, hatchways, or chute floor openings have handrails or hinged covers.
- Ensure that enclosed stairways with four or more steps have at least one railing, and that open stairways with four or more steps have two railings.
- Ensure that all platforms and walkways that are elevated or located next to moving machinery are equipped with handrails, guardrails, and toe boards.
- Barricade any wall openings through which a person or tools could fall. Use gates, doors, guardrails, or other physical barriers to block the opening.
- Mark and guard any excavation that is deeper than 12 inches.
- Mark and/or guard potholes and sidewalk damage as appropriate.
3.0 HEAVY EQUIPMENT SAFETY

3.1 When using heavy equipment, there are five basic guidelines that employees must always follow to ensure safety:

▪ Know how to properly operate the equipment you are using. Training on Proper operation shall be documented.

▪ Do not use heavy machinery when you are drowsy, intoxicated, or taking prescription medication that may affect your performance.

▪ Use only equipment that is appropriate for the work to be done.

▪ Inspect your equipment to ensure that it is in good working condition before beginning a job. In addition, ensure that regular inspections and maintenance are conducted as appropriate.

▪ Do not stress or overload your equipment.

3.2 Accidents do not just happen, they are caused. Therefore, employees should also follow these guidelines:

▪ Ensure the following before leaving equipment unattended:
 - All buckets, blades, etc. are on the ground.
 - Transmission is in neutral.
 - Engine is off.
 - Equipment is secure against movement.
 - Never get on or off moving equipment.
 - Do not attempt to lubricate or adjust a running engine.
 - Turn the engine off before refueling.
 - Keep all shields and safety guards in place.
 - Avoid underground utilities and overhead power lines.
 - Always check with the utility company before digging.
Dial 8-1-1.

Excavator
Calls 2 Business Days prior to planned excavation

811
(Call router sends call to available center)

If necessary, Facility operators send personnel to site to locate and mark underground lines
4.0 FORKLIFTS

The following sections provide basic guidelines for working with forklifts, front-end loaders, and backhoes. Refer to the product documentation that accompanied your equipment for more information and specific instructions.

4.1 Only authorized employees may operate forklifts. The following list provides general safety guidelines:

- Do not allow riders. Do not raise people on a forklift.
- Always wear your safety belt.
- Never leave keys in an unattended forklift.
- Do not speed.
- Drive up and back down ramps.
- Do not walk, stand, or work under the elevated portion of a forklift (even if it is not loaded).
- Ensure that the forklift has an overhead barrier to protect the operator from falling objects.

4.2 In addition, follow these guidelines for safe forklift operation:

- Always work within the capacity limits of your forklift. Consult with the manufacturer before modifying the operation or capacity limits of a forklift.
- Do not operate a forklift in areas with hazardous concentrations of acetylene, butadiene, hydrogen, ethylene, or diethyl ether, or other explosive environment.
- Never lift a load while moving. Wait until you are completely stopped before raising the mast.
- Be sure the top load sits squarely on the stack. An uneven load could topple.
- Travel with loads slightly tilted back to provide stability.
- Travel with loads at the proper height. A stable clearance height is usually 4 to 6 inches at the tips and 2 inches at the heels of fork blades.
- Lift stacked loads in the same manner as loads on the floor.
- When preparing to leave the forklift unattended, lower the mast, neutralize the controls, shut the power off, and set the brakes. The forklift is "unattended" when the operator is more than 25 feet away or the forklift is out of view.
- When ascending or descending a grade in excess of 10 percent, drive the forklift with the load upgrade.
- If you cannot see over a load, drive in reverse. Do not try to look around a load and drive forward.
4.3 Contact the Environmental, Health & Safety Occupational Safety for Forklift training and certification information.

5.0 BACKHOES

5.1 Only authorized employees may operate backhoes and front-end loaders. The following list offers general safety guidelines for both types of machinery:

▪ Always operate at a safe speed.
▪ Travel with the bucket low to the ground.
▪ Always lower the bucket before servicing the equipment or leaving the loader unattended.
▪ Use a rigid-type coupler when towing loads.
▪ Always check with the utility company before digging. Dial 8-1-1
▪ Be extremely careful when operating near banks and slopes.
▪ When cutting a bank, be careful not to cause a cave-in. Do not drive on an overhang.

6.0 HOISTS

Only authorized employees may use hoists to move heavy objects and equipment. Refer to section 3.1 when using hoists. In addition, follow the guidelines in the following sections.

6.1 Hoisting Guidelines

The following are general guidelines for working with hoists:

▪ Never walk, stand, or work beneath a hoist.
▪ Isolate hoisting area with barriers, guards, and signs, as appropriate.
▪ Never exceed the capacity limits of your hoist.
▪ Wear gloves and other personal protective equipment, as appropriate, when working with hoists and cables.
▪ Always hold tension on the cable when reeling it in or out.
▪ When the work is complete, always rig the hoist down and secure it.
▪ When the load block or hook is at floor level or its lowest point of travel, ensure that at least two turns of rope remain on the drum.
▪ Be prepared to stop operations immediately if signaled by the safety watch or another person.

6.2 Picking Loads up with Hoists
- Ensure that the hoist is directly above a load before picking it up. This keeps the hoist from becoming stressed. Picking up loads at odd angles may result in injury to people or damage to the hoist.

- Do not pick up loads by running the cable through, over, or around obstructions. These obstructions can foul the cable or catch on the load and cause an accident.

6.3 **Avoiding Electrical Hazards with Hoists**
- Do not hoist loads when any portion of the hoisting equipment or suspended load can come within 6 feet of high-voltage electrical lines or equipment.

- If you need to hoist near high-voltage electrical lines or equipment, obtain clearance from your supervisor first.

6.4 **Inspecting Hoists**
- Ensure that hoists are inspected annually by a certified inspector.

- Hoists should be inspected before use. If there is any question about the working condition of a hoist, do not use it.

- Hoist inspectors should note the following:
 - The hooks on all blocks, including snatch blocks, must have properly working safety latches.
 - All hooks on hoisting equipment should be free of cracks and damage.
 - The maximum load capacity for the hoist must be noted on the equipment.
 - Cables and wiring should be intact and free of damage.
 - E,H&S provides annual funding for hoist inspections.

7.0 **MOBILE CRANE SAFETY PROCEDURES**

7.1 In the initial survey of crane operations, look for crane stability, physical obstructions to movement or operation, and proximity of electrical power lines, as well as the following:

- **Leveling:** Has the crane operator set the crane up level and in a position for safe rotation and operation?

- **Outriggers:** Are the outriggers, where applicable, extended and being used in accordance with manufacturer’s recommendations?
▪ **Stability:** The relationship of the load weight, angle of boom, and its radius (the distance from the crane's center of rotation to the center of load) to the center of gravity of the load. Also, the condition of crane loading where the load moment acting to overturn the crane is less than the moment of the crane available to resist overturning.

▪ **Structural Integrity:** The crane's main frame, crawler, track and outrigger supports, boom sections, and attachments are all considered part of structural components of lifting. In addition, all wire ropes, including stationary supports, help determine lifting capacity and are part of the structural elements of crane operations.

▪ **Access to Job Site:** The site must be secured by barricades (caution tape or fencing) to prevent unauthorized entry to the area by: Faculty, Staff, Students, Visitors, and Construction Personal. The barricades must encompass the length the boom is extended and the area the boom will swing.

7.2 Crane operators and personnel working with cranes need to be knowledgeable of basic crane capacities, limitations, and specific job site restrictions, such as access restrictions to job site, location of overhead electric power lines, and high wind conditions. Personnel working around crane operations also need to be aware of hoisting activities or any job restrictions imposed by crane operations, and ensure job site coordination of cranes. Crane operators should be aware of these issues and, prior to starting crane activity, take time to observe the overall crane operations with respect to load capacity, site coordination, and any job site restrictions in effect.

7.3 Accidents can be avoided by careful job planning. The person in charge must have a clear understanding of the work to be performed and consider all potential dangers at the job site. A safety plan must be developed for the job and must be explained to all personnel involved in the lift.

8.0 **FALL PROTECTION PROGRAM**

8.1 **Fall Protection Requirements**

This Program prescribes the duty to provide fall protection, sets the criteria and practices for fall protection systems, and required training.

8.2 In the construction industry in the U.S., falls are the leading cause of worker fatalities. Each year, on average, between 150 and 200 workers are killed and more than 100,000 are injured as a result of falls at construction sites alone.

8.3 Standards for fall protection deal with both the human and equipment-related issues in protecting workers from fall hazards. Employers and employees are required to do the following:
▪ Where protection is required, select fall protection systems appropriate for given situations.
▪ Use proper construction and installation of safety systems.
▪ Supervise employees properly.
▪ Use safe work procedures.
▪ Train workers in the proper selection, use, and maintenance of fall protection systems.

8.4 This Program covers everyone except those inspecting, investigating, or assessing workplace conditions prior to the actual start of work or after all work has been completed.

8.5 This Program identifies areas or activities where fall protection is needed. These include, but are not limited to, ramps, runways, and other walkways, excavations, hoist areas, holes, formwork and reinforcing steel, leading edge work, unprotected side and edges, overhand bricklaying and related work, roofing work, precast concrete erection, wall openings, residential construction, and other walking/working surfaces. The rule sets a uniform threshold height of 6 feet, thereby providing consistent protection. This means that employers must protect employees from fall hazards and falling objects whenever an affected employee is 6 feet or more above a lower level. Protection also must be provided for workers who are exposed to the hazard of falling into dangerous equipment.

8.6 General Fall Protection
▪ Employers must assess the workplace to determine if the walking or working surfaces on which employees are to work have the strength and structural integrity to safely support the workers. Once the employer has determined that the surface is safe for the employees to work on, the employer must provide the proper fall protection for the fall hazard that is present. The employer must provide fall protection for employees, after identifying and evaluating fall hazards and providing specific training.

8.7 Controlled Access Zones
▪ A controlled access zone is a work area designated and clearly marked in which certain types of work (such as overhand bricklaying) may take place without the use of conventional fall protection systems-guardrail, personal arrest or safety-net to protect the employees working in the zone. Controlled access zones are used to keep out workers other than those authorized to enter work areas from which guardrails have been removed. Where there are no guardrails, masons are the only workers allowed in controlled access zones. Controlled access zones, when created for leading edge work is taking place, must be defined by a control line or by any other means that restricts access. Control lines shall consist of ropes, wires, tapes or equivalent materials, and supporting stanchions, and must be:
- Flagged or otherwise clearly marked at not more than 6-foot intervals with high-visibility material.
- Rigged and supported in such a way that the lowest point is not less than 39 inches from the walking/working surface and the highest point is not more than 45 inches (50 inches for overhand bricklaying) from the walking/working surface.
- Strong enough to sustain stress of not less than 200 pounds. Control lines shall extend along the entire length of the unprotected or leading edge and shall be approximately parallel to the unprotected or leading edge.
- Control lines also must be connected on each side to a guardrail system or wall.

8.8 Guardrail Systems

- If the employer chooses to use guardrail systems to protect workers from falls, the systems must meet the following criteria:
 - Top-rails and mid-rails of guardrail systems must be at least one-quarter inch nominal diameter; it must be flagged at not more than 6 feet intervals with high-visibility material, and must be inspected as frequently as necessary to ensure strength and stability. The top edge height of top-rails or guardrails must be 42 inches plus or minus 3 inches above the walking/working level.
 - When mid-rails are used, they must be installed at a height midway between the top edge of the guardrail system and the walking/working level and there shall be no openings in the guardrail system more than 19 inches.
 - The guardrail system must be capable of withstanding a force of at least 200 pounds applied within 2 inches of the top edge in any outward or downward direction and must not deflect to a height less than 39 inches above the walking/working level.
 - Mid-rails, screens, mesh, intermediate vertical members, solid panels, and equivalent structural members shall be capable of withstanding a force of at least 150 pounds applied in any downward or outward direction at any point along the mid-rail or other member.
 - When guardrail systems are used at hoisting areas, a chain, gate or removable guardrail section must be placed across the access opening between guardrail sections when hoisting operations are taking place.
 - At holes, guardrail systems must be set up on all unprotected sides or edges. When holes are used for the passage of materials, the hole shall not have more than two sides with removable guardrail sections.
- If guardrail systems are around holes that are used as access points (such as ladder ways), gates must be used or the point of access must be offset to prevent accidental walking into the hole.

- If guardrails are used at unprotected sides or edges of ramps and runways, they must be erected on each unprotected side or edge.

- Around holes (including skylights) that are more than 6 feet above lower levels.

- Excavation of 6 feet or more deep shall be protected from falling and where walkways are provided to permit foot traffic to cross over excavations, guardrails are required on the walkway if the fall would be 6 feet or more to the lower level.

8.9 **Personal Fall Protection Systems**

- This includes any of the following: an anchorage, connectors, and a full body harness and may include a deceleration device, lifeline, or suitable combinations.

- If a personal fall arrest system is used for fall protection, it must do the following:
 - Limit maximum arresting force on an employee to 1,800 pounds when used with a body harness;
 - Be rigged so that an employee can neither free fall more than 6 feet nor contact any lower levels;
 - Bring an employee to a complete stop and limit maximum deceleration distance an employee travels to 3.5 feet.
 - Have sufficient strength to withstand twice the potential impact energy of an employee freefalling a distance of 6 feet or the free fall distance permitted by the system, whichever is less.

- Personal fall protection systems must be inspected prior to each use for wear damage, and other deterioration. Defective components must be removed from service.

- Snaphooks shall be sided to be compatible with the member to which they will be connected, or shall be a locking configuration.

- Horizontal lifelines shall be designed, installed, and used under the supervision of a qualified person, as part of a complete personal fall arrest system that maintains a safety factor of at least two. Lifelines shall be protected against being cut or abraded.

- Full body harnesses are the only acceptable harness and must be used at all times on all personnel lifting equipment that is equipped with an attachable point, including scissor lifts (NO BELT HARNESS ALLOWED).
8.10 **Safety Monitoring Systems**

- When no other alternative fall protection has been implemented, the employer shall implement a safety monitoring system. Employers must appoint a competent person to monitor the safety of workers and the employer shall ensure that the safety monitor is:

 - Competent in the recognition of fall hazards.
 - Capable of warning workers of fall hazard dangers and in detecting unsafe work practices.
 - Operating on the same walking/working surfaces of the workers and can see them.
 - Close enough to work operations to communicate orally with workers and has no other duties to distract from the monitoring function.

8.11 **Toe boards**

- When toe boards are used as protection from falling objects, they must be erected along the edges of the overhead walking or working surface for a distance sufficient to protect persons working below. Toe boards shall be capable of withstanding a force of at least 50 pounds applied in any downward outward direction at any point along the toe board. Toe boards shall be a minimum of 3.5 inches tall from their top edge to the level of the walking/working surface, have no more than 0.25 inches clearance above the walking/working surface, and be solid or have openings no larger than 1 inch in size. Where tools, equipment, or materials are piled higher than the top edge of a toe board, paneling or screening must be erected the walking/working surface or toe board to the top of a guardrail system’s top rail or mid-rail, for a distance sufficient to protect employees below.

8.12 **Ramps, Runways, and Other Walkways**

- Each employee using ramps, runways, and other walkways shall be protected by guardrails systems against falling 6 feet or more.

8.13 **Wall Openings**

- Each employee working on, at, above, or near wall openings (including those with chutes attached) where the outside bottom edge of the wall opening is 6 feet or more above lower levels and the inside bottom edge of the wall opening is less than 39 inches above the walking/working surface must be protected from falling by the use of either a guardrail system, a safety net system, or a personal fall arrest system.

8.14 **Ladders**

- Ladders can make many tasks easier, but they are also a continual safety hazard. Even the best ladder is not safe unless you are trained and proficient in using ladders. Each year, many people suffer serious injuries from
accidents involving ladders. Before you use a ladder, take a moment to think about doing it safely.

- A secure, well-made ladder is necessary for safe ladder use. Ladders come in different styles, including step, straight, and extension. They also vary in construction and may consist of wood, aluminum, or fiberglass. Choose the correct type and size ladder for the job. All ladders sold within the U.S. are rated as follows:

 Type IA: Heavy-duty industrial ladder rated to hold up to 300 lbs.
 Type II: Medium-duty commercial ladder rated to hold up to 225 lbs.
 Type III: Light-duty household ladder rated to hold up to 200 lbs.

- Follow these guidelines for safe ladder usage:
 - Always inspect a ladder before you climb it. Make sure the steps are sturdy and the locking mechanisms are in good working order.
 - Carry ladders horizontally with the front end slightly higher than the back end.
 - To open a stepladder, make sure the spreader is locked and the pail shelf is in position. To open an extension ladder, brace the bottom end and push the rungs or rails out.
 - Place ladders on a solid, level surface to ensure safety.
 - Watch for overhead obstructions and power-lines.
 - To prevent ladders from sinking into soft ground, use a large board under the feet of the ladder.
 - Position a straight or extension ladder so that the use of the ladder is one foot away from the vertical support for every four feet of working ladder height (e.g., if you are working with eight feet of ladder, place the base of the ladder two feet from the wall).
 - Do not place the top of a ladder against a window or an uneven surface.
 - Tie the top of a straight or extension ladder to supports.
 - An extension ladder used for access to a roof must extend at least 3 feet beyond the support point.
 - Use a wooden or plastic ladder if you must work near electrical sources.
 - Do not place a ladder in front of a door unless you lock and barricade the door and post a warning sign on the opposite side of the door.
 - Use common sense when climbing or working on ladders.
 - Wear shoes with slip-resistant soles and make sure they are dry before climbing.
 - Never allow more than one person on a ladder.
- To climb or descend a ladder, face the ladder and firmly grip the rails, not the rungs, with both hands.
- Keep your body between the rails at all times. Do not shift your weight to one side.
- Have somebody steady the ladder if it cannot be secured otherwise.
- Do not stand on the top four rungs of an extension ladder or the top two rungs of a step ladder.
- When working on a ladder, keep two feet and one hand on the ladder at all times.
- Do not stand on the bucket shelf of a ladder.
- When working on a ladder, carry small tools on a tool belt. Use a rope to raise and lower heavy tools.
- Never leave a raised or open ladder unattended.
- Store ladders away from heat and moisture. Destroy damaged or unsafe ladders.

8.15 Glossary

- **Anchorage**- A secure point of attachment for lifelines, lanyards or deceleration devices.

- **Body harness**- Straps that may be secured about the person in a manner that distributes the fall-arrest forces over at least the thighs, pelvis, waist, chest, and shoulders with a means for attaching the harness to other components of a personal fall arrest system.

- **Connector**- A device that is used to couple (connect) parts of a personal fall arrest system or positioning device system together.

- **Controlled access zone**- A work area designated and clearly marked in which certain types of work (such as overhand bricklaying) may take place without the use of conventional fall protection systems-guardrails, personal arrest or safety net- to protect the employees working in the zone.

- **Deceleration device**- Any mechanism—such as rope, grab, rip-stitch lanyard, specially-woven lanyard, tearing or deforming lanyards, automatic self-retracting lifelines/lanyards—which serves to dissipate a substantial amount of energy during a fall arrest, or otherwise limits the energy imposed on an employee during fall arrest.

- **Deceleration distance**- The additional vertical distance a falling person travels, excluding lifeline elongation and free fall distance, before stopping, from the point at which a deceleration device begins to operate.

- **Guardrail system**- A barrier erected to prevent employees from falling to lower levels.
▪ **Hole**- A void or gap 2 inches or more in the least dimension in a floor, roof, or other walking/working surface.

▪ **Lanyard**- A flexible line of rope, wire rope, or strap that generally has a connector at each end for connecting the body belt or body harness to a deceleration device, lifeline, or anchorage.

▪ **Leading Edge**- The edge of a floor, roof, or formwork for a floor or other walking/working surface (such as the deck) which changes location as additional floor, roof, decking, or formwork sections are placed, formed or constructed.

▪ **Lifeline**- A component consisting of a flexible line for connection to an anchorage at one end to hang vertically (vertical lifeline), or for connection to anchorages at both ends to stretch horizontally (horizontal lifeline) and that serves as a means for connecting other components of a personal fall arrest system to the anchorage.

▪ **Low-slope roof**- A roof having a slope less than or equal to 4 in 12 pitch (vertical to horizontal). Pitch or slope is typically expressed as the amount of vertical rise (in inches) for every foot of horizontal longer along the gable.

▪ **Opening**- A gap or void 30 inches or more high and 18 inches or more wide, in a wall or partition, through which employees can fall to a lower level.

9.0 SCAFFOLDING (Included in Fall Protection Program)

9.1 When employees must conduct construction work above the ground and away from solid platforms, scaffolds may be appropriate. The following list provides guidelines for using small scaffolds. Larger scaffolds must be designed and erected in accordance with applicable standards.

9.2 Ensure that scaffold anchors are sound, rigid, and capable of supporting the maximum intended load without shifting.

NOTE: Scaffolds and their components should be capable of supporting at least four times their maximum load.

9.3 For freestanding, mobile scaffolds, the height should not exceed four times the minimum base dimension. If workers are riding the scaffolding, however, the base dimension should be at least one half the height.

9.4 Do not use unstable objects such as barrels, boxes, bricks, or blocks to support scaffolds or planks.

9.5 Keep floors free of debris where mobile scaffolds are used.
9.6 Lock scaffolds with wheels into position.

9.7 Install guardrails, mid-rails, or toe boards on the open sides and ends of platforms that are more than 4 feet above the ground or floor level. Use lifelines for scaffolds that are more than 6 feet off the ground.

9.8 Either overlap multiple planking and platforms by 12 inches or secure them to ensure stability.

NOTE: Planks must extend over end supports between 6 and 18 inches.

9.9 Secure scaffolds to permanent structures with anchor bolts or other means.

9.10 Do not load scaffolds in excess of their maximum load limits.

9.11 Repair damaged scaffolds immediately.

9.12 Do not work on scaffolds in high winds or during storms.

9.13 Do not allow tools, equipment, or other debris to accumulate on scaffolds.

9.14 Dismantle and remove scaffolds when they are no longer needed. Do not use temporary scaffolding as a permanent installation.

10.0 TRENCHING

10.1 “Excavation Requirements” 29 CFR 1926.65129 CFR 1926.65

- Controls the trenching and excavation requirements for construction (excluding tunnels)
- Provides requirements for employee entrance, working environment, and egress to/from open surface trenches and excavations

10.2 Pre-excavation requirements

- The estimated location of utility installations such as sewer, telephone, fuel, electric, water lines, or other underground installations that reasonably may be encountered during excavation work shall be determined prior to opening an excavation. Call 8-1-1 for underground utilities.
- Utility companies or utility locator should be contacted to precisely locate such utilities.
- Excavation may precede with CAUTION if:
 - Utility Company/Locator cannot be located or contacted.
 - Company/Locator cannot locate utility
10.3 Excavation opening requirements

- When excavating operations approach the location of underground utilities, the exact location shall be determined by a safe and acceptable means.
- While excavation is open, underground installations shall be protected, supported, or removed as necessary to safeguard employees.

10.4 Excavation access/egress

- Structural ramps/runways used for access/egress
- If constructed of two or more members, shall have members connected together
- If constructed of two or more members, shall have members of uniform thickness
- Cleats or other connections shall be attached to bottom of runways/ramps
- Runways/ramps shall be anchored to prevent movement or slipping
- Ladders
 - Shall be of proper design
 - Shall be secured from movement or slippage
 - Shall extend 3’ above top of excavation

10.5 Employee protection

- Employees exposed to public vehicular traffic shall be provided with and wear vest or other suitable garments marked with high visibility materials.
- No employee shall be permitted underneath loads handled by digging or lifting equipment.
- When mobile equipment is operated near excavation; barricades, hand and mechanical signals, or stop logs shall be used to protect employees in excavations.

10.6 Hazardous atmospheres

- Excavations of greater than 4’ depth that are located in or near hazardous materials, liquids, or gases shall be tested for the presence of hazardous atmospheres prior to employee entry.
- Excavation of greater 4’ depth shall be regularly tested for oxygen deficiency (less than 19.5% oxygen)
- Ventilation and respiratory protection shall be provided where hazardous atmospheres are encountered
10.7 Stability of adjacent structures
- Excavations near structures or buildings shall be protected by shoring or other means to assure stability of the affected structure
- Diversion ditches, dikes, or other suitable means shall be provided to prevent surface water intrusion where natural drainage has been interrupted
- Excavations near foundation footings, sidewalks, pavement, or other appurtenant structures shall be protected by underpinning or other suitable means to maintain stability

10.8 Stability of excavated materials and excavation walls
- Trenches 4ft or more in depth should be provided with a fixed means of egress or shoring.
- Excavated materials shall be kept a minimum of 2’ from the edge of excavations or by the use of retaining devices
- Excavated materials may require further clearance from excavations in accordance with soil types (see table)
- Excavation wall slopes or other wall protection shall be used in accordance with soil type, moisture levels, and other criteria as specified in the soil tables (see table)

10.9 Figures associated with trenching are depicted below:
- There is a "natural angle of repose" for soil. It means that over time the soil will go to a certain slope (usually its natural angle).
- Evacuation protection is a function of soil type

OSHA categorizes soil and rock deposits into four types as follows:

A. **STABLE ROCK** is a natural solid mineral matter that can be excavated with vertical sides and remain intact while exposed. Most of the time it is identified by a rock name such as granite or sandstone.

B. **TYPE ‘A’ SOILS** are cohesive soils with an unconfined compressive strength of 1.5 tons per square foot or greater. These types of soils are often clay, silt clay, sandy clay, clay loam and in certain cases, silty clay loam and sandy clay loam.

C. **TYPE ‘B’ SOILS** are cohesive soils with an unconfined compressive strength greater than 0.5, but less than 1.5 tons per square foot. Examples include angular gravel silt, silt loam, and/or previously disturbed soils.

D. **TYPE ‘C’ SOILS** are cohesive soils with an unconfined compression strength of 0.5 tons per square foot or less. Granular soils like gravel, sand and loamy sand, submerged soil, soil from which water is freely seeping, and submerged rock that is not stable fall into the Type ‘C’ soil category.
Environmental, Health & Safety
Information for Vendors, Contractors, and Subcontractors

Welcome to TAMU-CC. We want to make your visit here both productive and safe. We request that you read, understand, and call us, the Environmental, Health and Safety Department (E, H&S) at ext. 5555 if you have any questions regarding this document.

We at TAMU-CC follow all applicable state, federal, and local E, H&S regulations. Upon being granted facility access, you and all your employees also agree to observe all applicable regulations. You are responsible to communicate the information to all your employees.

A Site Safety Plan approved by E, H&S is required before commencing your project.

TAMU-CC reserves the right to stop any on-site work activity for environmental, health and safety reasons.

Emergency Phone Numbers

In case of an emergency call:

University Police Department (UPD)
(361) 825-4444 off campus
ext. 4444 from campus phone

E, H&S Department:
(361) 825-4444 off campus
ext. 555 from campus phone

Facilities Services:
(361) 825-2324 off campus
ext. 2324 from campus phone

Environmental, Health & Safety
NRC Building, Room #1100
6300 Ocean Drive
Corpus Christi, TX 78412
361-825-5555
EVACUATION PROCEDURES

HAZARD COMMUNICATION
1) You and your employees are not allowed to bring in any chemicals without E, H&S’ approval. Each chemical must be accompanied with a Safety Data Sheet (SDS.)

2) When using chemicals, you are required to communicate its hazards to the people in the area by providing the building coordinator or his/her designee a SDS for the chemical.

3) Before you work in an area, you and your employees are required to find out whether there are any chemicals in that area. If there are, you should contact our POC at Facilities Services for the SDS for those chemicals and read them to understand the hazards.

ELEVATED WORK
1) You and your employees are required to be trained in Fall Protection Safety before working from elevated locations.

2) You are required to provide your employees with proper safeguarding (i.e. aerial lift, fall protection equipment, etc.)

3) You are also required to submit a Site Safety Plan for working on any roof to E, H&S.

FIRE SAFETY
Before planning any work that involves open flames, or production of heat and/or sparks you are required to obtain a “Hot Work Permit” from the E, H&S Department by calling 825-5555. Hot work includes, but not limited to: brazing, cutting, grinding, soldering, heating asphalt, torch applied roofing, and welding. Make sure to plan your work schedule because you will be asked to monitor the area for a certain period of time after completing the hot work.

SAFE OPERATING PROCEDURES
You and your employees are required to follow all applicable federal, state, and local regulations regarding workplace safety.

Electrical Safety: You and your employees are required to be trained in Electrical Safety before working on electrical work at TAMU-CC. You are also required to wear appropriate electrical personal protective equipment such as V-rated gloves, leather gloves, flame resistant smock, EH rated shoes, etc. according to NFPA 70E.

Control of Energy Sources: You and your employees are required to be trained in Lockout/tag out (LOTO) and equipped with LOTO devices. You and your employees are required to block out all sources of energy before working on equipment.

Bloodborne Pathogen Prevention Plan
You and your employees are required to be knowledgeable of the blood borne pathogen prevention plan. When you see any blood or other potentially infectious materials in the area, don’t touch it. Notify UPD at 361-825-4444.
Confined Spaces: You and your employees are required to be trained and follow all the OSHA Permit Required Confined Space standard 29CFR 1910.146.

Powered Industrial Truck Safety: You and your employees are required to be trained before operating any powered industrial truck at TAMU-CC.

Personal Protective Equipment (PPE): You are required to provide your employees with proper PPE for each task. If you have any questions, contact E, H&S at ext. 5555.

Using TAMU-CC Tools & Equipment is not allowed:

~~~~~~~~~~

**CRANE & HOIST SAFETY**

Coordinate Crane and Hoist operations with UPD and EH&S. The work location must be sufficiently cordoned off preventing public access. In addition, if you hoist any items up to the roof, you are required to coordinate with UPD and E, H&S so that they can clear out all students and personnel occupying in the path of the hoist or under the location the item will be placed.

~~~~~~~~~~

HAZARDOUS MATERIALS & HAZARDOUS WASTE RULES

DO:
- Report all chemical spills to E, H&S at ext. 5555.
- Call E, H&S when you have any questions regarding hazardous material or waste.
- Follow safe work practices according to all applicable state, federal, and local regulatory requirements.
- Properly handle, label, store, and dispose of hazardous materials and waste. Container labeling must be consistent with OSHA requirements.
- Wear proper personal protective equipment when required.

DON'T:
- Don't leave any hazardous material stored or unattended without permission and guidance from E, H&S.
- Don't introduce, work with and/or store any hazardous material in a work area without first obtaining E,H&S approval and notifying the area supervisor and the building coordinator.
- Don't discharge any hazardous material or waste into any sink, drain, or sewer.
- Don't leave any hazardous waste on site. All hazardous waste generated by you must be properly transported offsite in accordance with all state, federal, and local regulatory requirements.
- Do not impair of impede the use of emergency equipment such as eyewash stations, sprinklers, fire extinguishers, alarms, etc.

~~~~~~~~~~

**SECURITY**

**Work area:** You are required to coordinate with UPD and E, H&S before blocking off any area (e.g. roof, street, sidewalk, parking lot, etc.) on campus.
Loading/Unloading in an area that is not a loading zone: Call UPD x4444 on campus or 825-4444 off campus.

TRENCHING & SHORING SAFETY

Trenches and holes must be barricaded or isolated with orange safety fencing when there is no hole watch, or at the end of the work day.
Before starting any work that requires you to dig a hole in the ground, you are required to follow all applicable regulatory requirements for trenching/shoring (i.e. sloping, benching, hazardous atmospheres, protective systems, and soil classification, etc.)

STORM WATER MANAGEMENT

Construction General Permit: Storm Water discharges from construction activities may require a permit from the Texas Commission on Environmental Quality (TCEQ). Permit information can be found at: https://www.tceq.texas.gov/

- Construction activities that disturb less than 1 acre, and are not part of a larger common plan of development that would disturb 1 or more acres, are not required to obtain coverage under this general permit.
- Construction activities which disturb at least 1 but less than 5 acres, or are part of a larger common plan of development that will disturb at least 1 but less than 5 acres, are regulated under the Construction General Permit and require a Notice of Intent submitted to TCEQ, a Site Notice for “Primary Operators” of Large Construction Activities and a Site Notice for “Secondary Operators” of Large Construction Activities posted at the site.
- Construction activities which disturb 5 or more acres, or are part of a larger common plan of development that will disturb 5 or more acres, are regulated under the Construction General Permit and require a Notice of Intent submitted to TCEQ, a Site Notice for “Primary Operators” of Large Construction Activities and a Site Notice for “Secondary Operators” of Large Construction Activities posted at the site.

Storm Water Pollution Prevention Plan (SWP3) Requirements:

Operators of construction activities that qualify for coverage under the Construction General Permit and that discharge storm water associated with construction activities into surface water in the state must:

- Develop a SWP3 according to the provisions of the general permit that covers the entire site and begin implementation of that plan prior to commencing construction activities.
- Post a signed copy of a TCEQ approved site notice in a location at the construction site where it is readily available for viewing prior to commencing construction activities and maintain the notice in that location until completion of the construction activity and final stabilization of the site.
- Ensure the project specifications allow or provide that adequate Best Management Practices (BMPs) may be developed and modified as necessary to meet the requirements of the general permit and the SWP3.
- Ensure all contractors and subcontractors are aware of the SWP3 requirements.
- Ensure that the SWP3 identifies the applicable personnel responsible for implementation of control measures described in the plan.
- Contact E, H&S to submit your SWPS.
**Litter Control:** Maintain a clean litter free work site. **DO NOT** over fill dumpsters allocated for construction material.

**Overflows and Infiltration:** Texas A&M University-Corpus Christi will continue to take measures to prevent overflows of sanitary sewage to the MS4. These measures include:

- Regular maintenance of sanitary sewer lines including visual inspection and cleaning of grease traps and known problem areas as needed to prevent overflows.
- Respond to emergencies using appropriate equipment and materials to control overflows.
- Proper disposal of waste materials.
- Implement necessary repairs immediately or as soon as practicable.

~~~~~~~~~~

SUMMARY

E,H&S at TAMU-CC is available to answer any questions you have regarding all environmental, health and safety programs for this campus. *When in doubt, please ask.*
X. ELECTRICAL SAFETY

1.0 GENERAL ELECTRICAL SAFETY

1.1 The danger of injury through electrical shock is possible whenever electrical power is present. When a person's body completes a circuit and thus connects a power source with the ground, an electrical burn or injury is imminent. Most fatal injuries result from high-voltage exposure; however, people can sustain severe injuries from low voltage power if it has a high current flow. Electrical safety is important in every work environment. The following sections cover circuit breaker loads, electrical grounding, electrical safety guidelines, and electrical emergency response.

2.0 DEFINITIONS

2.1 The following definitions help clarify general electrical safety:

- **Amps:** The standard unit for measuring electrical current.
- **Watt:** A unit of electrical power, equal to the power developed in a circuit by a current of amp flowing through a potential difference of one volt.
- **Voltage:** Electromotive force expressed in volts.
- **Circuit Breaker:** A device that automatically interrupts the flow of an electrical current.
- **Breaker Box:** An insulated box on which interconnected circuits are mounted.
- **Electrical Panel:** An insulated panel on which electrical wires are mounted.
- **Current Flow:** The rate of flow of an electrical charge, generally expressed in amps.
- **Electrical Load:** The amount of power delivered by a generator or carried by a circuit, a device to which the power is delivered.
- **Ground-Fault Circuit Interrupter (GFCI):** A GFCI detects grounding problems and shuts electricity off to prevent a possible accident.
- **High Voltage:** The term high voltage applies to electrical equipment that operates at more than 600 Volts (for terminal to terminal operation) or more than 300 Volts (for terminal to ground operation). Low voltage, high current AC or DC power supplies are also considered to be high voltage.
- **Hazardous Energy Sources:** This term applies to stored or residual energy such as that in capacitors, springs, elevated machine members, rotating flywheels, hydraulic systems, and air, gas, steam, or water pressure.
- **Lockout:** The placement of a lock on an energy-isolating device. This
act prevents workers from operating a piece of equipment until the lock is removed.

- **Tag-out**: The placement of a tag on an energy-isolating device. A tag-out device is a prominent warning device of a lockout.

- **Energy-Isolating Device**: A mechanical device that prevents the transmission or release of energy. Examples include the following:
 - Manually operated circuit breakers
 - Disconnect switches
 - Line or block valves

- **Pushbuttons**: Selector switches, and other control circuit devices do not isolate energy. Energy-isolating devices should be lockable by means of a hasp or other type of attachment. It should not be necessary to dismantle or reassemble a device to lock it.

- **Authorized Employee**: A person who locks out or tags out equipment for service or maintenance. Authorized employees have been formally trained in proper lockout/tag-out procedures.

3.0 CIRCUIT BREAKER LOADS

3.1 Most office and laboratory locations have 20 amp circuit breakers that serve two or more outlets. These breakers can handle most office equipment; however, the widespread use of personal computers and associated hardware can create an electrical overload. To determine your current electrical load, follow these steps:

- Check office/laboratory equipment for a manufacturer’s rating label that indicates total watts or amps. Take special care to check appliances that use electricity to generate heat.

- Convert the watts rating to amps:
 - Amps = Watts ÷ Voltage (typically 120 Volts)

- Total the amps for each circuit.
 - If the total equals more than 15 amps per 20 amp circuit, you may be overloading the circuit. Move enough equipment to a different circuit to reduce the circuit load; otherwise, have the Facilities Services inspect the circuit wiring.

4.0 ELECTRICAL GROUNDING

4.1 Proper electrical grounding can help prevent electrical injury. Most electrical equipment is grounded with either a three-prong plug or
a two-prong plug and insulation. Because a grounding system may be defective without your knowledge, use a GFCI to ensure electrical safety. GFCIs are required in moist or potentially damp environments, near water sources, etc. Contact Facilities Services for assistance if a GFCI may be needed.

5.0 ELECTRICAL PANELS

5.1 Electrical panels or breaker boxes require special safety considerations, including the following:

- Know where your panel box is located.
- Do not tape circuit switches to keep a breaker from tripping.
- Ensure that breaker circuits are accurately labeled within panel boxes.
- Ensure that panel box doors are securely attached.
- Do not block panel boxes. There should be at least 30 inches of clear space in front of a panel box.
- Make sure there are no missing pop-outs on the electrical panel.

5.2 Report tripped breakers and refer any electrical questions to the Facilities Services at 361-825-2324.
- Do not take it upon yourself to re-set a breaker.

6.0 ELECTRICAL SAFETY GUIDELINES

6.1 Follow these guidelines for general electrical safety:

- Be familiar with the electrical hazards associated with your workplace.
- Unplug electrical equipment before repairing or servicing it.
- If a prong breaks off inside an outlet, do not attempt to remove it yourself.
- Call the Facilities Services for assistance.
- Ensure that outlets are firmly mounted. Report any loose outlets to Facilities Services.
- Report all electrical problems, including tripped breakers, broken switches, and flickering lights, to Facilities Services.
- All appliances used in TAMU-CC buildings must be UL or FM (Factory Mutual) labeled.
- Do not use an appliance that sparks, smokes, or becomes excessively hot.
- Keep electrical equipment away from water, unless the appliance is specifically designed for use around water, such as a wet-dry shop vacuum.
- Use GFCIs when within 6’ of a water source.
- Be aware of overhead power lines when working with tall equipment (e.g., grain augers, cranes, sailboats, etc.).
- Follow lockout/tag-out procedures, as appropriate. Refer to Section 8.0.
6.2 Follow these guidelines for electrical plug and cord safety:
- Do not plug a power strip into another power strip or an extension cord.
- Do not remove the prongs of an electrical plug. If plug prongs are missing, loose, or bent, replace the entire plug or the cord and plug.
- Do not use an adapter or extension cord to defeat a standard grounding device. (i.e., only place three-prong plugs in three-prong outlets; do not alter them to fit in a two-prong outlet.)
- Use extension cords only when necessary and only on a temporary basis. Do not use extension cords in place of permanent wiring. Request new outlets if your work requires equipment in an area without an outlet.
- Use extension cords that are the correct size or rating for the equipment in use. The diameter of the extension cord should be the same or greater than the cord of the equipment in use.
- Do not run electrical cords above ceiling tiles or through walls.
- Keep electrical cords away from areas where they may be pinched and where they may pose a tripping or fire hazard (e.g., doorways, walkways, under carpet, etc.)
- Avoid plugging more than one appliance in each outlet. If multiple appliances are necessary, use an approved power strip with surge protector and circuit breaker. Do not overload the circuit breaker.
- Discard damaged cords, cords that become hot, or cords with exposed wiring.
- Never unplug an appliance by pulling on the cord; pull on the plug.
- Always unplug and secure an extension cord when not in use.

7.0 ELECTRICAL EMERGENCY RESPONSE

7.1 The following instructions provide guidelines for handling three types of electrical emergencies:
- Electric Shock: When someone suffers serious electrical shock, he or she may be knocked unconscious. If the victim is still in contact with the electrical current, immediately turn off the electrical power source.

IMPORTANT: Do not touch a victim that is still in contact with a power source; you could electrocute yourself.

- Have someone call for emergency medical assistance immediately. Administer first-aid, as appropriate.
▪ Electrical Fire: In case of an electrical fire, try to disconnect the electrical power source, if possible. If the fire is small, you are not in immediate danger, and you have been trained in fighting fires, use any type of fire extinguisher except water to extinguish the fire.

IMPORTANT: Do not use water on an electrical fire. Instead use a fire extinguisher approved for electrical fire use.

▪ Power Lines: Stay away from live power lines and downed power lines. Be particularly careful if a live power line is touching a body of water. The water could conduct electricity. If a power line falls on your car while you are inside, remain in the vehicle until help arrives.

8.0 CONTROL HAZARDOUS ENERGY LOCKOUT/TAG-OUT PROCEDURES
Contractors/sub-contractors must comply with OSHA 29CFR1910.147.

8.1 Preplanning for Lockout (Preparation for Shutdown)
An initial survey shall be made to determine which switches, valves, or other energy isolating devices apply to the equipment being locked out. More than one energy source (electrical, mechanical, hydraulic, pneumatic, chemical, thermal, or others) may be involved. Any questionable identification of sources shall be cleared by the employees with their supervisors. Before lockout commences, job authorization should be obtained from the supervisor.

▪ Only supervisors or authorized individuals trained in lockout/tag-out procedures shall prescribe the appropriate duties and responsibilities relating to the actual details that affect the lockout/tag-out. Energy isolating devices shall be operated only by authorized individuals or under the direct supervision of authorized individuals. Where high voltages greater than 480V are involved the supervisor electrician shall be responsible for turning off the main power controls.

▪ All energy isolating devices shall be adequately labeled or marked to indicate their function. The identification shall include the following:
 - Equipment supplied
 - Energy type and magnitude

▪ Where system complexity requires, a written sequence in checklist form should be prepared for equipment access, lockout/tag-out, clearance, release, and start-up.

8.2 Lockout/Tag-out Procedures preparation
▪ Notify all affected employees/building occupants that a lockout is required and the reason therefore.
▪ Contact necessary departments and personnel.
▪ Only authorized personnel are to secure a lockout/tag-out device. Authorized personnel include managers, supervisors, and/or HVAC Technicians.
▪ Machine or Equipment Shutdown
 - If the equipment is operating, shut it down by the normal stopping procedure (depress stop button, open toggle switch, etc.). Disconnect switches should never be pulled while under load, because of the possibility of arcing or even explosion.
 - Personnel knowledgeable of equipment operation should be involved with shut down or re-start procedures.
▪ Machine or Equipment Isolation
 - Operate the switch, valve, or other energy-isolating device so that the energy source(s) (electrical, mechanical, hydraulic, etc.) is (are) disconnected or isolated from the equipment. Stored energy, such as that in capacitors, springs, elevated machine members, rotating flywheels, hydraulic systems, and air, gas, steam, or water pressure, etc., must also be dissipated, disconnected, or restrained by methods such as grounding, repositioning, blocking, bleeding-down, etc. Pulling a fuse is not a substitute for locking out. A pulled fuse is no guarantee the circuit is dead, and even if it were dead, there’s nothing to stop someone from inadvertently replacing the fuse.
 - CAUTION: Intermittently operating equipment such as pumps, blowers, fans, and compressors may seem harmless when dormant. Don’t assume that because equipment isn’t functioning, it will stay that way.

LO/TO Procedures: Removal of lock/tag while authorized employee is not available:
The Supervisor is required to follow these steps:

1. Verify that the authorized employee who applied the lock/tag is **not** at TAMU-CC
2. Ensure that the equipment is **safe to start up**
3. Bold cut the lock and remove tag
4. Authorize the start up
5. Fill out the “**Personal Lock Removal Notification**” form
6. Inform the authorized employee that the lock/tag were removed before he/she resumes work
7. Request authorized employee to sign the form before starting work the next day
8. Retains form for a year

LO/TO Procedures: Energy-Isolating devices cannot be locked out. When the energy-isolating devices cannot be locked out:

1. Submit a work request to Facilities Services for the design, fabrication, and installation of an energy-isolating device
2. If an energy-isolating device cannot be fabricated or until it is installed, use the following procedure:

THE SAFETY-WATCH PERSON SHALL HAVE NO OTHER DUTIES. HE/SHE SHALL NOT LEAVE THE STATION, EXCEPT WHEN FORMALLY RELIEVED FROM DUTY OR FOR PERSONAL SAFETY

LO/TO Procedure For More Than One Servicing Employees

▪ Before starting the project, supervisor must discuss LO/TO procedures with all personnel involved
▪ Use multi-lock hasp
▪ Each employee’s lock and tag is placed on the multi-lock hasp – Each employee is required to determine “zero energy state” for himself
▪ Before re-energizing equipment, each employee must remove his/her lock/tag

LO/TO Procedure for Shut Down

▪ Identify all hazardous energy
▪ “Multiple-Energy-Sources” documentation
 - Yellow Warning sign
 - Equipment labeling
 - Safe Operating Procedure
▪ Notify Supervision if equipment is not properly identified
▪ Notify all affected personnel
▪ Shut down equipment in proper sequence
▪ Use appropriate level of PPE and tools
▪ Isolate & release all energy sources in proper sequence
▪ Verify “zero energy state”
▪ Lock and tag the energy isolation device(s)

LO/TO Procedure for Start Up

▪ Inspect Equipment
▪ Remove Tools - Verify all tools are accounted for
▪ Clean-up debris
▪ Replace guards
▪ Notify all affected personnel
▪ Remove all locks, tags
▪ Restore energy & reactivate the system in the proper sequence

Seasonal shutdowns or decommissioned equipment lock/tag

1. LOTO padlock and tag are not to be used for seasonal shutdowns or decommissioned equipment
2. Procedure
 Use designated padlocks (different than the red, gold, or blue padlocks for LOTO)
 Yellow tags marked with information including:
– Either “Seasonal Shutdown” or “Decommissioned Equipment”
– Name and ext. number of employee who locked and tagged the equipment

▪ Application of Lockout/Tag-out
Lockout and tag the energy isolating device with an assigned individual lock, even though someone may have locked the control before you. You will not be protected unless you put your own padlock on it. For some equipment it may be necessary to construct attachments to which locks can be applied. An example is a common hasp to cover an operating button. Tags shall be attached to the energy isolating device(s) and to the normal operating control and shall be attached in such a manner as to preclude operation.

▪ Verification of Isolation
- After ensuring that no personnel can be exposed and as a check on having disconnected the energy sources, operate the push button or other normal operating controls to make certain the equipment will not operate.
- If there is a possibility of re-accumulation of stored energy to a hazardous level, verification of isolation shall be continued until the maintenance or repair is completed, or until the possibility of such accumulation no longer exists.
- CAUTION: Return operating controls to neutral position after the test. A check of system activation (e.g. use of voltage indicator for electrical circuits) should be used to assure isolation.
- The equipment is now locked out.

8.3 Release from Lockout/Tag-out
▪ Before lockout or tag-out devices are removed and energy is restored to the machine or equipment, inspect the work area to ensure that nonessential items have been removed and to ensure that machine or equipment components are operationally intact.
▪ Check work area to ensure that all employees are in the clear. Notify affected employees that lockout/tag-out devices have been removed.
▪ The employee who applied the device shall remove each lockout/tag-out device from each energy-isolating device. The energy isolating devices may be opened or closed, to restore energy to equipment.
▪ Contact authorized personnel when energy is restored and return lockout/tag-out device. (Proper Documentation Required)

8.4 Lockout/Tag-out Interruption (Testing of Energized Equipment)
▪ In situations where the energy isolating device(s) is lockout/tagged and there is a need for testing or positioning of the equipment/process, the following sequence shall apply:
- Make sure to Clear equipment and/or process of tools and materials.
- Make sure all personnel are clear of danger. Remove the control of locks/tags according to established procedure.
- Proceed with test, etc.
- De-energize all systems and re-lockout/re-tag-out the controls to continue the work.

8.5 Procedure Involving More Than One Person

- In the preceding steps, if more than one individual is required to lock out equipment, each shall place a personal lock and tag on the group lockout device when he/she begins work, and shall remove those devices when he/she stops working on the machine or equipment. The supervisor, with the knowledge of the crew, may lock out equipment for the whole crew. In such cases, it shall be the responsibility of the supervisor to carry out all steps of the lockout procedure and inform the crew when it is safe to work on the equipment. Additionally, the supervisor shall not remove a crew lock until it has been verified that all individuals are clear.

- Scheduled Leave
 - If the owner of the device (owner being the person who installed the lockout/tag-out device) is going on scheduled leave and someone else may need to work on the locked out unit, they must remove their lock and have it replaced by a new owner who is on regular duty.

8.6 Conditions for lockout/tag-out removal by Authorized Personnel

- Only the owner of the device shall remove lockout/tag-out devices.
- Exceptions to the conditions of removal:
 - Owner incapacitated by illness or injury then his/her supervisor shall remove the lockout/tag-out devise.
 - Owner is no longer is employed by Texas A&M University-Corpus Christi University, then his/her supervisor shall remove the lockout/tag-out devise.
 - If Authorized Personnel determines that circumstances warrant removal of a lockout/tag-out device, every effort must be made to contact the owner of the device. After the above conditions have been met the Authorized Personnel may remove device.

9.0 HIGH VOLTAGE PROCEDURES

- In addition to the guidelines associated with general electrical safety and lockout/tag-out procedures, there are more stringent safety requirements for high voltage procedures.
- The following list provides high-voltage safety tips. For more information, please refer to Title 29 Section 1910.269 of the Code of Federal Regulations or NFPA 70 (National Electric Code).
- Ensure that only authorized employees work around high voltage equipment.
- Label entrances with a High Voltage Sign.
- Ensure that terminal voltage ratings can withstand surges caused by electrical faults or switching transients.

- Be careful around output circuits even when the input power is off. Parallel power sources and energy storage devices can still be dangerous.
- Be careful when working with power supplies that serve more than one area.
- Before working in a high voltage area, inspect the power supply and check all protective devices.
- Do not work alone near high voltage.
- Label equipment to identify power sources. Label input power sources to identify connected power supply loads.
- Attach emergency shutdown instructions and phone numbers to equipment that is remotely controlled or unattended while energized.

9.1 Before entering a power supply or associated equipment enclosure to work on hazardous energy sources, complete the following:

- De-energize the equipment.
- Open and lockout the main input power circuit breaker.
- Check for auxiliary power circuits that could still be energized.
- Inspect automatic shorting devices for proper operation.
- Short the power supply with grounding hooks.

10.0 MINIMUM CLEAR WORKING SPACE

10.1 The following table from the National Electric Code provides minimum depth of clear working space in front of electrical equipment:

- Where conditions (i), (ii), and (iii) are as follows:
 (i) Exposed live parts on one side and no live or grounded parts on the other side of the working space, or exposed live parts on both sides effectively guarded by suitable wood or other insulating materials. Insulated wire or insulated bus bars operating at not over 300 volts shall not be considered live parts.
 (ii) Exposed live parts on one side and grounded parts on the other side. Concrete, brick, or tile walls will be considered as grounded surfaces.
 (iii) Exposed live parts on both sides of the workspace [not guarded as provided in condition (i)] with the operator between.

- SSC has an arc flash suit and rescue pole available for high voltage work.
XI. ENVIRONMENTAL MANAGEMENT

1.0 ENVIRONMENTAL MANAGEMENT

1.1. Environmental Management is a set of processes that enables an organization to reduce its environmental impact and increase its operating efficiency. The Environmental Council reviews and drafts environmental policy and programs to assist the University with improving compliance, pollution prevention, environmental education, stewardship, and sustainability.

1.2. Environmental impacts are well regulated by both the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA). Environmental, Health and Safety has developed programs to help the campus comply with the regulations and reduce its impact on the environment.

2.0 SPILL CONTROL PROCEDURES

IMPORTANT NOTE: STOP THE SPILL BEFORE IT GETS TO THE STORM DRAIN

DO NOT USE ANY SURFACTANTS ONCE THE SPILL GETS ON THE WATER

2.1 In the event of oil or other hazardous-material spill, immediately pick up the Spill Kit, take it to the scene, and follow these steps:

- Notify E,H&S
- Put on PPE: Splash goggles and gloves

- Protect the storm drain from spill: cover it with the drain cover.

- Contain the spill: use absorbent socks to stop it from entering the storm drain.
- Absorb spill: use absorbent socks, pads, or pillows to absorb the spill.
2.2 Clean up:
Once all spill materials have been absorbed, place all used absorbent socks, pads, or pillows in the disposal bag.

- Absorb any excess fluid with absorbent pads.
- Spray “Simple Green” on contaminated surface.
- Absorb cleaning-fluid substances with absorbent pads and dispose of them in the disposal bag.
- If the drain cover is contaminated, clean it with “Simple Green” and absorbent pads, then dispose of waste in disposal bag.
- Complete the “Hazardous Waste” sticker label; identify the contents as “Spill Debris”, put the date on label, and affix it on the disposal bag.
- Close hazardous waste bag with nylon tie.
- E,H&S is to dispose of the hazardous waste properly and refill the Spill kit.
Fire and life safety at Texas A&M University-Corpus Christi (TAMU-CC) is governed by federal, state and local, standards and System Regulations. Ultimate jurisdiction for fire safety lies with the Texas State Fire Marshal and Corpus Christi City Fire Marshal as Authority Having Jurisdiction (AHJ). TAMU-CC has designated Facilities Services and Environmental, Health and Safety for Fire and Life Safety responsibilities, such as, day to day fire prevention, inspection, and program oversight. However, each and every individual, whether faculty, staff, student, or visitor on our campus shares a role in fire safety.

E, H&S serves as the Point of Contact (POC) for the State and City Fire Marshall. TAMU-CC is committed to providing a safe environment for building occupants and emergency response personnel.

1.0 PROGRAM REQUIREMENTS

▪ The basis for the fire and life safety program at TAMU-CC is provided for by TAMU System regulation - 24.01.01 Supplemental Risk Management Standard.

2.0 APPLICABLE CODES AND STANDARDS

2.1 The Texas State Fire Marshal’s Office has adopted the National Fire Protection Association Life Safety Code©, NFPA 1, and all referenced codes and standards as the primary guide for fire and life safety. It is important to note that this code is not all inclusive, is not a building code, and that other codes and standards may also apply. Some of these include, but are not limited to:

▪ International Building Code
▪ International Fire Code
▪ International Mechanical Code
▪ Americans with Disabilities Act
▪ Texas Accessibility Standards Act

3.0 FIRE AND LIFE SAFETY PROGRAM

3.1 The fire and life safety program at TAMU-CC involves numerous activities, programs, and procedures to help ensure that our campus is a safe place to work, live, and play. These program areas include fire prevention, fire suppression, emergency preparedness, preplanning, education, and response. The following information is provided as a general guideline for activities associated with fire and life safety. Additional information may be obtained by contacting Environmental,
4.0 APPLIANCES

4.1 An appliance can be defined as any instrument or piece of equipment or device designed for a particular use and powered by electricity. (i.e. computers, copy machines, refrigerators, freezers, space heaters etc.) Use the following guidelines when using appliances on campus.

- Always use appliances that are UL or FM labeled.
- Adequate space should be given around appliances to allow for air circulation.
- Clothes dryers should have the lint removed after each load and excess build-up of lint around the dryer should be cleaned regularly.
- Large appliances such as refrigerators, freezers and microwaves should be plugged directly into wall outlets.
- Frequently inspect the electrical connection of appliances to ensure a good connection with the receptacle.
- Frequently inspect the condition of appliances. If appliances begin to spark or produce an electrical smell, turn power off immediately and discontinue using the appliance.
- A list of unauthorized and potentially hazardous appliances includes, but is not limited:
 - Air purifiers
 - Aquariums
 - Coffee cup warmers
 - Floor fans (small desk fans may be used)
 - Hot plates (break room only)
 - Space heaters
 - Scent warmers
 - Toaster ovens

5.0 ARSON

5.1 If arson is suspected, no matter how small the incident, contact the University Police Department. Do not alter the fire scene in any way, unless you are trying to extinguish a live fire. The state fire marshal will investigate any possible arson.

6.0 BUILDING EVACUATION PLAN/DRILLS

6.1 Facilities at TAMU-CC have an emergency evacuation plan as specified in the TAMU-CC Emergency Management Plan.
6.2 To ensure that building occupants are prepared for an emergency evacuation, drills must be conducted on a regular basis. Evacuation drills may be used to vacate a building for several reasons such as fires, gas leaks, chemical spills, bomb threats or other similar emergencies and emphasis should be placed on orderly evacuation rather than on speed.

6.3 Standard Operating Procedures:

TEAM:
- University Police Department (UPD): at least 1 officer
- Facilities Services (FS): at least 1 person
- Environmental, Health & Safety (E,H&S): at least 1 person
 - Equipment: Motorola radio, safety vests, ear plugs and evacuation signs

PROCEDURES:
1. E,H&S coordinates and has an agreement with UPD & Facilities Service (FS) on the building, time, and date.
2. Prior to the scheduled time, E,H&S will call UPD dispatcher and FS to confirm that the UPD officers & FS personnel are available for the drill(s.)
3. All team members switch their radios to “Emergency” channel, put on the safety vest, and head toward the building.
4. On arrival, everyone on the team reports to the dispatcher.
5. A team member pulls the alarm.
6. Team members stand at the exits and guide the evacuators to a location at least 100 ft. away from the building.
7. UPD officer(s) sweep the entire building.
8. One FS person stays at the fire alarm panel to read and document all indications on the fire alarm panel.
9. Tenant(s) with mobility impairment who are on upper levels will be moved to the Area of Refuge. Team member will assign a tenant to stay with them until the drill is completed.

10. Upon the completion of the building sweep, the officer notifies Facilities Service to reset the system.

11. Facilities Service resets the pull station, fire alarm panel, HVAC system and the elevators.

12. After the fire alarm system is back to normal, team members allow building tenants return to the building.

13. The officer notifies the dispatcher to give an “All Clear” via the radio system.

14. Everyone on the Fire Drill team reports to the dispatcher on the clearing.

15. Team debriefing.

16. E,H&S submits all necessary work requests and maintain records.

7.0 CANDLES AND INCENSE

7.1 The use of candles, incense burners, oil lamps and other items are governed by a University Standard Administrative Procedure General guidelines include:

- Candles, incense burners, oil lamps or other personal items that have open flames or that smolder, are prohibited in work areas (individual or group), conference rooms, restrooms, etc. in all campus buildings. This restriction applies to such items regardless of whether the item has been lit.

- Candles, flame effects, or pyrotechnics used for banquets, ceremonies, science demonstrations, theatrical productions, indoor fireworks or other entertainment are addressed as Hot Work and subject to Hot Work permitting requirements. E,H&S issues the Hot Work. The request to use the aforementioned items may be subject to approval by the State Fire Marshal.

- This use of candles does not apply to such devices used in the course and scope of University or Agency sponsored research or activities necessary to conduct business operations. If the burning of a candle(s) is permitted under the above mentioned exemption, the
candle must be in a glass or similar container and kept away from combustible materials.

- Students living in residence halls and University-owned apartments are governed by the Student Code of Conduct as set forth by the Division of Student Engagement and Success. No items are permitted on the premises including candles (with or without a wick), kerosene lamps, oil lamps, gasoline, propane, etc. Additionally, items that create embers or ashes (i.e. incense) are not permitted on the premises.

8.0 COMBUSTIBLE STORAGE

8.1 One of the most common violations of general fire safety practices is that of improper or excessive storage of combustible material by storing excess combustible materials improperly, employees not only increase the potential for having a fire, they increase the potential severity of a fire. To reduce the hazards associated with combustible storage, follow these guidelines:

- Eliminate excess combustible materials such as paper and cardboard.
- Never store combustible materials in hallways, stairwells, or mechanical rooms.
- When stacking combustible materials, leave at least 24” from the top of the storage to the ceiling and 18” from a sprinkler head.

9.0 COMPRESSED GAS CYLINDERS

9.1 Compressed gas cylinders, in service or in storage, shall be adequately secured (chained) to prevent falling or being knocked over. Ropes, cords, rubber and other combustible material are not approved for this purpose. Compressed gas cylinders shall have their caps in place except when they are in use or are being serviced or filled.

10.0 DECORATIONS

10.1 When decorating your area, there are several things that you must be aware of:
- Never hang anything from fire sprinkler piping or heads.
- Never obstruct fire alarm devices.
- Any combustible decorations such as curtains or drapes must be of a fire resistant material.
- Never obstruct an exit or the visibility thereof.
- Never staple or tack light strings.
- Decorations should not be placed in exit corridors or stairways.

10.2 Holiday Decorations
Holiday decorations are often fire hazards if not utilized properly. Follow these guidelines to improve fire safety during the holidays:
- Do not use live cut Christmas trees in University buildings. Use an artificial tree that is fire resistant.
- Do not place holiday decorations where they may block emergency egress (e.g., stairways, corridors, near doors, etc.)
- Only use decorations that are fire retardant.
- Practice good housekeeping by minimizing paper and other combustible decorations.
- Avoid using extension cords. If you must use an extension cord, use a heavy gauge cord and place it in plain view. Make sure the cord does not pose a tripping hazard. Unplug the cord before leaving the area.
- Use FM or UL labeled electrical decorations.
- Do not light candles or use other decorations with open flames.
- Turn off the decorative lights when the room is unoccupied.

11.0 LITHIUM-ION/POLYMER BATTERIES

11.1 Lithium-ion/polymer batteries can be hazardous and liable to cause serious injuries to persons or property. READ AND FOLLOW THE MANUFACTURERS INSTRUCTIONS.

ALWAYS:
- Use a fire proof LiPo safety bag, metal ammo box, or other fire proof container when you are charging, discharging, or storing batteries
- Examine the charger regularly for damage to the cord, plug, enclosure or other parts
- Examine the batteries for bulges, or other damage
- Disconnect the charger when not charging the battery
- Keep the battery at ambient temperature
- Remove the battery from the device when not in use
- Avoid short circuits
- Avoid direct contact with the electrolyte contained within the battery.
 The electrolyte and electrolysis vapors are harmful to your health.
NEVER:

- Use a damaged charger
- Use, store or charge a swollen battery, a leaky battery or one which has been damaged
- Leave your batteries charging while unattended. If a battery starts to become puffy, smoke, or catches fire you need to be able to immediately handle the situation. Walking away for even just 5 minutes can spell disaster.
- Charge the battery immediately after use while it is still hot. Let it cool down to room temperature.
- Use the charger to charge any other battery
- Overcharge the battery. When the battery is fully charged, disconnect the charger and remove the battery.
- Charge the battery near inflammable materials or on an inflammable surface (carpet, wooden flooring, wooden furniture, etc.) or conducting surface
- Charge the battery while it is still connected to the device
- Cover the charger while the battery is charging
- Use the battery if the plastic cover has been torn or compromised in any way
- Insert or remove the battery while the device power is on
- Expose the battery to excessive physical shock, heat or dispose of in a fire
- Allow the battery to come into contact with any kind of liquid
- Put the battery in a microwave oven or in a pressurized container
- Attempt to dismantle, pierce, distort, repair or cut the battery
- Place any heavy objects on the battery or charger
- Clean the charger with a solvent, denatured alcohol or other inflammable solvents
- Expose your device to extreme temperatures or place near a source of heat

12.0 ELECTRICAL SAFETY

12.1 Extension Cord and Power-Strip Use

- Many times it is necessary to use extension cords or power strips (surge protectors) to reach a work area or to provide additional outlets. It is important not to overload outlets, protect cords, and follow the manufacturer’s recommendation. Additionally, the following guidelines should be used while utilizing these items.
- Extension cords are for temporary use (defined as an 8-hour work day or less)
 - Unplug and properly store cords when not in use
 - Install permanent code compliant wiring for longer than 30 days use.
 - Extension cords or power strips must be plugged directly into a wall receptacle – no daisy chaining is permitted
 - Extension cords should be used for portable equipment
 - Extension cords and power strips should be examined regularly for damage and removed from service if damage is found
 - Extension cords and power strips should be UL listed
 - Extension cords shall not be run above ceiling or under carpet or other similar materials

12.2 Electrical Panel Access
- A working space of not less than 30” wide (or width of equipment), 36” deep and 78” high shall be provided in front of electrical service equipment. No storage shall be permitted within this designated work space.

13.0 EMERGENCY ACCESS AND EGRESS

13.1 Emergency access and egress are critical during an emergency situation such as a fire. During a fire, timing and quick response are essential to save lives and property. Effective emergency access ensures that fire trucks can reach a building in time to extinguish the fire. Unobstructed emergency egress ensures that building occupants can exit a building to safety.

13.2 Emergency access helps ensure that facilities and equipment remain available and unobstructed at all times to ensure effective fire detection, evacuation, suppression, and response. Emergency egress is defined as a continuous and unobstructed way to travel from any point in a public building to a public way. A means of egress may include horizontal and vertical travel routes, including intervening rooms, doors, hallways, corridors, passageways, balconies, ramps, stairs, enclosures, lobbies, courts, and yards.

13.3 Corridors, Stairways, and Exits
- An exit corridor and/or stairway is a pedestrian pathway that allows direct access to the outside of a building and/or allows
access to a building entrance and subsequent pathways to the outside of a building (i.e., an exit corridor is the quickest, easiest, and most direct pathway for leaving a building). Because exit corridors or passageways are the primary means of egress during an emergency, employees must follow the safety guidelines outlined in this section.

- Follow these guidelines to promote safe evacuation in corridors, stairways, and exits:
 - Keep all means of egress clean, clutter-free, and unobstructed.
 - Do not place hazardous materials or equipment in areas that are used for evacuation.
 - Do not use corridors or stairways for storage or office/laboratory operations.
 - Do not place locks, chains, or other devices that can defeat or obstruct an exit without prior written permission from E,H&S.
 - Corridors may not be used as an extension of the office or laboratory.

14.0 Flammable and Combustible Liquids

14.1 Definitions:

- **Flash Point**
 The lowest temperature at which vapors above a volatile combustible substance will ignite in air when exposed to a spark or flame.

- **Flammable Liquid**
 Any liquid that has a closed cup flash point below 100 °F.

- **Combustible Liquid**
 Any liquid that has a closed cup flash point at or above 100 °F.

14.2 Flammable Liquids are further classified as Class I, Class IA, IB and IC liquids. Combustible liquids are further classified as Class II, Class III, Class IIIA and Class IIIB liquids. You can identify if you are working with flammable or combustible materials by referencing the flash point on the product label or SDS sheet.

14.3 When working with these materials, precautions should be taken to prevent the ignition of flammable vapors by sources such as the following: open flames, hot surfaces, radiant heat, smoking, cutting and welding, sparks, static electricity. Make sure you are in a well-ventilated and/or exhausted area to allow dangerous vapors to dissipate or escape the area. Only acceptable containers that meet the requirements set forth in the Flammable and Combustible Liquids Code.
published by the National Fire Protection Association (NFPA) should be used with flammable and combustible liquids. The allowable size of these containers is dependent upon the class of liquid and the container type and is specified in the Flammable and Combustible Liquids Code (NFPA 30). Flammable and Combustible liquids must be stored inside a flammable; cabinet in amounts as defined in NFPA 30.

15.0 FIRE DETECTION AND NOTIFICATION

15.1 These systems utilize several different types of detection devices including heat, flame, and smoke detectors, relays from suppression/extinguishing systems, and manual pull stations to activate the notification portion of the system. Building fire alarm systems are monitored by the UPD and Facilities Services at the Central Plant.

15.2 Detection Devices

Heat Detectors
Heat detectors respond to the convected energy in hot smoke and fire gases (i.e., heat). Heat detectors are normally located in laboratories, mechanical rooms, storage areas, break rooms, and areas that could produce high levels of dust, steam, or other airborne particles.

Smoke Detectors
Smoke detectors respond to the solid and liquid aerosols produced by a fire (i.e., smoke). Since smoke detectors cannot distinguish between smoke particles and other particles such as steam, building occupants must be aware of detector locations and be considerate when working around them. Smoke detectors are normally found in exit corridors, office areas, assembly areas, and sleeping areas.

Smoke Detectors/Construction Work
Protect smoke detectors with some type of cover when construction work, such as dust or fume producing activities, may affect smoke detectors. Inform UPD and E,H&S when planning to cover a smoke detector. Remove protectors immediately at the end of the activity or at the end of each day. Consult with E,H&S about the FM Global Red Tag Program when disabling fire protection equipment.

Flame Detectors
Flame detectors respond to the presence of a flame. Flame detectors may be found in specific areas where a fire will develop rapidly and the hazard is greater than what is expected in normal locations.
within buildings such as chemical storage rooms. These devices are most commonly used in conjunction with a fire extinguishing system.

Manual Pull Stations

Manual pull stations, when activated, will initiate the building's fire alarm notification system. Pull stations are generally located near exit stairways, near building exits, or in long corridors. Occupants should be familiar with the location of these devices should one need to initiate a building evacuation.

15.3 **Building Notification**

The building notification system may consist of horns, bells, speakers, strobes, or a combination of these devices. It is important to maintain a clear line of sight to any of these devices to ensure they can be seen and/or heard.

16.0 FIRE DOORS

16.1 Fire doors serve as a barrier to limit the spread of fire and restrict the movement of smoke. Unless these doors are held open and released by the building fire alarm system, fire doors should remain closed at all times. Do not tamper with fire doors or block them with equipment, potted plants, furniture, etc.

16.2 Fire doors are normally located in stairwells, corridors, and other areas required by Fire Code. The door, door frame, locking mechanism, and closure are rated between 20 minutes and three hours. A fire door rating indicates how long the door assembly can withstand heat and a water hose stream. All fire doors will have a label affixed to the door indicating the manufacturer, rating, serial # of the door and other information. It is important to not remove, paint, or in any way damage or destroy the label.

16.3 For your safety and to maintain the integrity of fire doors there are several important items to remember:

- Know which doors are fire doors and keep them closed to protect building occupants and exit paths from fire and smoke.
- Never block a fire door with a non-approved closure device such as a door stop, blocks of wood, or potted plant.
- For fire doors with approved closure devices, make sure that nothing around the door can impede the closure.
Never alter a fire door or assembly in any way. Simple alterations such as changing a lock or installing a window can lessen or completely void the fire rating of the door.

Doors to offices, laboratories, and classrooms help act as smoke barriers regardless of their fire rating. Keep these doors closed whenever the room is unoccupied.

A closed door is the best way to protect your path to safety from the spread of smoke and fire.

17.0 FIRE EXTINGUISHERS

17.1 Fire Extinguishers, when used properly, play a vital role in containing and/or extinguishing small fires. Portable fire extinguishers are designed to be used on small, contained fires, by properly trained individuals. Lives could be saved, and property damage reduced, when fire extinguishers are used correctly.

17.2 Know the location of the closest extinguisher. A quick response is crucial to effectively put out a fire. You should not have to travel any farther than 75 feet to get to an extinguisher. This distance may be reduced in labs and other high hazard areas.

17.3 There are five classifications for fires. These are:

Class A: Fires involving ordinary combustibles, such as paper, wood, plastic, cloth, and trash.

Class B: Fires that involve flammable or combustible liquid such as gasoline, solvents, oil, paint, and thinners.

Class C: Fires that involve energized electrical equipment or appliances.

Class D: Fires involving flammable metals, such as magnesium and sodium.

Class K: Fires that involve cooking media, such as vegetable oils.

17.4 There are fire extinguishers designed for each type of fire. Some extinguishers can be used on more than one type of fire.

17.5 Class A extinguishers are to be used only on Class A fires. This extinguisher contains only water and compressed air and is not to be used on B, C, D, or K fires.

17.6 Carbon Dioxide extinguishers are recommended for Class B and C fires. Halon or other similar type fire extinguishers are also rated to be used on B and C fires.

17.7 Dry Chemical extinguishers come in two types. One type is rated for B-C fires, and the other is rated for A-B-C fires. The ABC or multipurpose
17.8 Class D extinguishers are specialized to be used only on flammable metals. Never attempt to extinguish a Class D fire with anything other than a CLASS D extinguisher.

17.9 Class K extinguishers are designed to be used on flammable cooking oils. They are to be used in conjunction with a commercial fire suppression system.

17.10 There is no extinguisher that is designed to be used on all types of fires. It is important to know your fire extinguisher and its limitations.

17.11 Maintenance
Once used, fire extinguishers must be serviced or replaced. If an extinguisher has been used, is missing, needs to be relocated, or any other type of service, contact E,H&S for assistance.

17.12 Portable fire extinguishers are located throughout buildings across the campus. They are installed according to National Fire Protection Association codes and standards. Extinguishers are readily accessible in hallways, near exits, and in areas containing high fire hazards. Never block access to an extinguisher.

17.13 Using an extinguisher.
To use a fire extinguisher you must remember the PASS-word.
- Pull the ring-pin (held in place by a plastic seal) to “un-lock” the operating lever
- Aim the nozzle at the base of the fire
- Squeeze the lever completely
- Sweep the extinguishing agent from side to side until the fire is extinguished

17.14 The normal operating distance of different extinguishers will vary considerably. A dry chemical extinguisher will have a discharge range of 8-10 feet, while a Carbon Dioxide may only reach 5-6 feet.

17.15 Remember:
- Only attempt to extinguish small, contained fires
- Make sure you are properly trained, and capable of fighting the fire
- Be certain that you have the correct extinguisher for the type of fire
- Always keep a clear, unobstructed exit
▪ Never turn your back on a fire
▪ Fires may re-ignite, so be prepared

17.16 Training
▪ Learn how to use a fire extinguisher before an emergency occurs. E,H&S provides hands on training in the use of portable fire extinguishers. Participants will learn about the different types of extinguishers and how to use each type. Make sure you have the correct extinguisher for the type of fire to be extinguished. All extinguishers have a label that states what type of fire they can be used on and this will be explained to further assist occupants in selecting the proper type of extinguisher. For information on the training please contact E,H&S at ext. 5555.

18.0 FIRE HYDRANTS

18.1 Fire hydrants are located throughout the campus and play a vital role in fire suppression operations. It is important to maintain a clear path to all hydrants and allow clear distances around hydrants to allow uninhibited operation should an emergency occur. It is also important that vehicles are not parked within 15 feet of fire hydrants or other fire safety equipment.

19.0 FIRE LANES

19.1 A fire lane is an area designated for emergency personnel only. It allows them to gain access to building and/or fire protection systems. Parking in or blocking any fire lane is prohibited. Red painted curbs identify campus fire lanes.

20.0 FIRE AND LIFE SAFETY INSPECTIONS

20.1 Fire and life safety inspections are conducted at least annually in TAMU-CC facilities. The goal of these inspections is to help identify potentially unsafe practices and conditions in TAMU-CC facilities. These are not surprise inspections. We want to work with building occupants to help ensure a fire safe environment in which to work.

20.2 Some of the items that our inspectors will be looking for include but are not limited to:
▪ Access to the facility for emergency responders
▪ Means of egress and verifying that egress components are unobstructed and in working condition
▪ Electrical safety (extension cords, power strips etc.)
Storage of materials from un-sprinkled building (24" from ceiling; 18" from sprinkler heads)

▪ General Housekeeping
▪ Presence of ignition sources

20.3 At the conclusion of the inspection a report is generated and sent back to the department. A follow up inspection verifies that the necessary actions were taken to remediate any inspection deficiencies.

21.0 FIRE PREVENTION

21.1 Fire Safety is everyone’s responsibility. In fact you are your office’s best fire inspector. The following section will provide ways you can help prevent fires.

▪ Fire prevention starts with good housekeeping. Loose papers, trash and other combustible items such as cardboard boxes are a fuel source for fire. If these combustible items are stored neatly and properly the risk of fire can be greatly reduced. Here are some things to be mindful of when it comes to combustible items:

- Never store combustible items within 24 inches of the ceiling.
- If you have sprinkler heads in your building keep ALL storage at least 18 inches below the sprinkler heads.
- Keep combustible items away from electrical sources that may produce heat and/or sparks. (Outlets, multiple adapters, etc.)
- Keep quantities of combustible items to a minimum.
- Never store combustible items in an exit corridor or stair enclosure.
- Combustible items should not be stored in mechanical equipment rooms or electrical rooms.

22.0 FIRE REPORTING

22.1 If you discover a fire in a facility on campus you should

▪ Locate and activate the nearest manual pull station (Pull stations should be located near building exits) to initiate a building evacuation
▪ Call 4444 from any campus phone or 825-4444 if calling from a cell or off campus phone to report the fire and provide any information such as:

 - Building Name
 - Room Number
- Type of Fire
- Any injuries
- Any other information requested by the emergency operator

- If you are trained in the proper use of portable fire extinguishers and are not in immediate danger you may attempt to extinguish the fire (see Fire Extinguishers)

23.0 FIRE SUPPRESSION

23.1 TAMU-CC uses various types of fire suppression equipment including portable fire extinguishers, water sprinklers, special gas extinguishing systems, cooking hood systems, and fire hose/standpipe systems. The following sections discuss each type of fire suppression equipment.

23.2 Sprinkler Systems
The purpose of a water sprinkler system is to contain and to minimize the spread of a fire, but is often successful in extinguishing fires. Sprinkler heads are normally activated by heat. Generally, if one is activated not all of the sprinklers in a building will discharge. Only in specialized sprinkler systems are they connected to smoke detectors or manual pull stations.

23.3 To ensure that sprinklers are effective in the event of a fire:
- Maintaining a minimum of 18 inches of clearance below the sprinkler head is required to any equipment or stored items.
- Do not hang drapes, curtains, tarps, etc that will interfere with the spray pattern of the sprinkler.
- Never attach or hang anything from sprinkler piping or sprinkler heads
- Do not paint or damage sprinkler heads in any manner.

23.4 Fire Extinguishing Systems
- Special work areas such as computer server rooms or bulk chemical storage rooms may contain specialized gaseous fire extinguishing systems such as carbon dioxide (CO2), FE 13, FM 200, or Halon1301 in lieu of water based fire suppression systems. These systems work by displacing the oxygen in the room to a level that will no longer support a fire. To ensure that the system operates as designed, the area or room(s) protected must have its structural integrity preserved in order to maintain the required concentration level of the gas. There should be no penetrations through walls, ceilings, or floors and doors should be kept in the closed position. An FM 200 system is installed in The Network Operation's Center (NOC).
Once a system is activated, the low level of oxygen is also dangerous to humans. Caution should be used when working in areas where these oxygen-depriving extinguishing agents are used. Manually operated systems, such as a pull-station or push button, should have signs posted indicating it will activate the agent. Do not enter a room that has discharged an oxygen-depriving agent until it has been ventilated and appropriate tests of the atmosphere have verified it is safe to enter.

23.5 Fire Hoses and Standpipe Systems

A standpipe system is an arrangement of piping, valves, hose connections and allied equipment installed in a building or structure for the purpose of manually extinguishing a fire. Local fire department responders will use the standpipe system in the event of a fire in a building. Access to these systems should be maintained at all times and should not be blocked by any equipment, chairs, desks, etc.

24.0 LIQUIFIED PETROLEUM GAS (LPG)

24.1 The Texas Railroad Commission regulates the sale and use of LPG, including butane and propane. In addition, the Liquefied Petroleum Gas Code (NFPA 58) provides regulations on the use of LPG as well. These regulations govern several types of LPG-powered equipment and procedures including the following:

- Forklifts
- Floor buffers
- Cooking and heating equipment
- Laboratory equipment

24.2 Exhaust fumes may contain carbon monoxide which can present a health hazard. Exhaust can also create smoke which may activate a smoke detector. Take special precautions to ensure adequate ventilation when using these machines indoors.

24.3 Because LPG is extremely flammable, it is a potential fire hazard. Do not store LPG near heat, flame, or other ignition sources. In addition, do not leave portable LPG containers larger than 16 oz. in a building overnight. Instead, place portable LPG containers and LPG equipment outside in a storage area that is at least 25 feet away from other buildings, combustible materials, roadways, railroads, pipelines, utility lines, and the property line. This storage area should prevent unauthorized entry and have a portable fire extinguisher within 25 feet.
24.4 When using portable LPG containers the requirements listed below shall be followed:

- Inspect containers for excessive denting, bulging, gouging, and corrosion and check hoses for cracks and deterioration; containers displaying any of these signs shall be removed from service
- Label all containers as Flammable and as LP-Gas, Propane, or Butane
- Cylinders shall be located to minimize exposure to excessive heat, and physical damage
- Cylinders shall be stored away from exits, stairways, or areas normally used or intended for the use of egress for occupants
- The maximum allowable quantity of LPG stored in a building shall not exceed 200 pounds in one location.
- Quantities in excess of this amount shall be stored outside in a lockable ventilated enclosure of metal exterior construction; protection against vehicle impact shall be provided

24.5 LPG powered Industrial Trucks

- Use of LPG powered industrial trucks shall follow the guideline for containers in the previous section, in addition to the following:
 - LPG cylinders shall be refueled outdoors
 - The number of cylinders on an industrial truck shall not exceed 2
 - The size of a cylinder on an individual truck shall not exceed 45 pounds
 - Cylinder pressure relief valve discharge shall be directed upward within 45 degrees of vertical and shall not impinge on the cylinder, exhaust system, or any other part of the truck
 - The discharge opening shall be provided with a protective cover
 - Trucks shall not be parked or left unattended without the cylinder shutoff valve being closed
 - Do not park truck near areas of excessive heat or near sources of ignition

25.0 OPEN BURNING

25.1 TAMU-CC has a no open burning policy.
26.0 PYROTECHNICS/OPEN FLAMES

26.1 The use of pyrotechnics or open flames on the TAMU-CC Campus is regulated and requires a permit issued by E,H&S prior to any performance or use. The use of consumer fireworks on campus is prohibited.

26.2 For further information on the use of pyrotechnics or open flames contact E,H&S at 825-5555.

27.0 TOBACCO SMOKE AND E-VAPOR FREE ENVIRONMENT

27.1 TAMU-CC University procedure Tobacco, Smoke, and E-Vapor Free Environment 34.05.99.C1 states: Texas A&M University-Corpus Christi strives to maintain an environment that protects the health of each person while on the TAMU-CC campus. The use of tobacco products, smoking and/or simulated smoking material (e.g. E-Cigarettes) is prohibited in University buildings, within 25 feet of doorways, residence facilities, University vehicles, outdoor venues, outdoor athletic events, semi-enclosed walkways including the campus “spine,” in all gazebos-(palapas), in the area surrounding the Early Childhood Development Center (from the curb to the building inside the fenced area surrounding the building), and in the Hector P. Garcia memorial plaza. Where smoking is allowed, it is important to fully extinguish any smoking material or dispose in an appropriate disposal container.

28.0 TENTS

28.1 Erection of tents on the TAMU-CC campus shall be in accordance with the National Fire Protection Association as outlined in the Life Safety Code and the International Building Code. For more information, contact E,H&S Office.

28.2 Flame Resistance and Structure
- all tent fabric must be flame resistant
- a certificate or other proof of approval by a testing laboratory is acceptable as evidence of the required fire resistance. A copy of the certificate must be provided to E,H&S upon request. These certificated should be available from the tent supplier.

28.3 Floor Coverings
- The area enclosed by any tent and not less than 10 feet outside of such tent, must be cleaned of all flammable or combustible material or vegetation prior to erecting the tent. The premises must be kept free from such flammable or combustible materials during the period for which the area is used.
1.0 GRAPHIC ARTS MEDIA

1.1 The art supplies and chemicals associated with graphic media are often hazardous. Depending on the type of art supplies used, artists can develop the same types of occupational diseases as industrial workers. Studies show that people who work with hazardous graphic media chemicals improperly can develop a variety of ailments.

1.2 The risk of chemical hazards is directly linked to the following factors:
 - Duration and frequency of exposure
 - Chemical toxicity
 - Chemical amount

1.3 Employees and students may be exposed to graphic media hazards through skin contact, inhalation, and ingestion.

1.4 Follow these safety guidelines for working with graphic media materials:
 - Wear protective clothing and follow SDS, as appropriate.
 - Use nontoxic or less toxic solvents and chemicals when possible.
 - Eliminate toxic metals such as lead and cadmium. Instead, use cadmium-free silver solders and lead-free paint, glazes and enamels.
 - Use water-based instead of solvent-based materials.
 - Use liquid materials to replace powders.
 - Use wet techniques (such as wet sanding) instead of dry techniques.
 - Apply coatings by brushing or dipping instead of spraying.
 - Eliminate cancer-causing chemicals.

2.0 SOLVENTS

2.1 Solvents are used to dissolve oils, resins, varnishes, and inks. They are also used to remove paint and lacquer. Due to their common usage, solvents are one of the most underrated media hazards. Most organic solvents are poisonous if swallowed or inhaled in sufficient quantities. They also cause dermatitis and narcosis.
2.2 Use the least toxic solvent possible. Denatured or isopropyl alcohol, acetone, and odorless mineral spirits are less toxic than solvents such as chloroform or ethylene.

3.0 AEROSOL SPRAYS
3.1 Aerosol sprays, such as fixatives, paint sprays, and adhesive sprays, are extremely dangerous if someone inhales the fine mists produced by these products. Air brushes and spray guns are equally hazardous. Use aerosol sprays in a well-ventilated area and wear a dust/vapor mask to protect you from the hazardous vapors.

4.0 ACIDS AND ALKALIS
4.1 The acids and alkalis used in ceramics, photochemicals, paint removers, and similar materials can be very caustic to the skin, eyes, respiratory system, and gastrointestinal system. Likewise the acids and alkalis used to etch metals and glass can be very dangerous. Strong acids, such as hydrochloric, sulfuric, and perchloric acid, require special handling as outlined in the SDS. Alkalis, such as caustic potash, caustic soda, quicklime, and unslaked lime, also require special treatment. Remember to add acid to water, not water to acid, when mixing chemicals.

5.0 PAINTS AND PIGMENTS
Many paints and color pigments contain hazardous chemical compounds.

5.1 Lead paint, for example, is extremely dangerous, and should never be used in its powder form. Other paint components, such as chromate, cadmium, and cobalt pigments, are equally hazardous. Do not inhale powdered paint or spray paint vapors or accidentally ingest pigment by placing the brush tip in your mouth. In addition, do not eat, drink, or smoke while painting. Any of these activities could result in chronic poisoning.

5.2 The table below outlines common paint pigments and their hazardous chemical component:

<table>
<thead>
<tr>
<th>Hazardous Chemical</th>
<th>Pigment (Paint Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>Emerald Green Cobalt Violet</td>
</tr>
<tr>
<td>Antimony</td>
<td>True Naples Yellow</td>
</tr>
<tr>
<td>Cadmium</td>
<td>All Cadmium Pigments</td>
</tr>
</tbody>
</table>
6.0 PHOTOGRAPHY

6.1 Many of the chemicals used for photographic processing can cause severe skin and lung problems. The greatest hazards associated with photography include the preparation and use of concentrated chemical solutions. Never touch chemical powders or solutions with unprotected hands. In addition, take care not to stir up and inhale chemical dusts.

IMPORTANT: Good ventilation is essential when working with photographic chemicals.

The following are common photographic agents and their hazards:

- **Developer:** May cause skin irritation and allergic reactions.
- **Stop-bath:** May cause burns and throat irritation.
- **Fixer:** Highly irritating to lungs.
- **Intensifier:** Very corrosive and may cause lung cancer.
- **Reducer:** Contact with heat, concentrated acids, or ultraviolet radiation produces poisonous gas.
- **Toners:** Highly toxic.
- **Hardeners and stabilizers:** Often contain formaldehyde which is poisonous, a skin irritant, and a known carcinogen.

7.0 PLASTICS, ACRYLICS, AND EPOXY RESINS

7.1 Plastic hazards result from making plastic and working with finished plastic. The greatest hazards associated with making plastic come from the monomers, solvents, fillers, catalysts, and hardeners that are commonly toxic. The hazards involved with finished plastics result mainly from the methods used to work the plastic. For example, overheating or burning plastic produces toxic gases. Polishing, sanding, and sawing plastic produces harmful dusts.

7.2 Certain types of plastics, such as acrylics and epoxy resins are also
hazardous. The components in acrylic, for example, include irritants, explosives, and flammables. The main hazard associated with acrylic compounds, however, is inhalation. Always maintain good ventilation when working with acrylic.

7.3 The epoxy resins used in laminating, casting, glues, and lacquer coatings, are also skin irritants, sensitizers, and suspected cancer-causing agents. Avoid skin contact and inhalation when working with epoxy resins.

8.0 POTTERY AND CERAMICS

8.1 Pottery clay contains silicates that can be hazardous if inhaled. Many low-fire clays and slip-casting clays also contain talc, which may be contaminated with asbestos. Long-term inhalation of asbestos can cause cancer and respiratory diseases. When mixing clay dust or breaking up dry grog, use exhaust ventilation and/or wear an N series dust respirator. Work with wet clay when possible.

8.2 Pottery glazes also contain free silica, including flint, feldspar, and talc. Wear a toxic dust respirator when mixing or spraying glazes.

8.3 Toxic fumes and gases are often produced during the firing process. Ensure that all kilns are ventilated. In addition, use infrared goggles or a shield to look in the kiln peep hole. Proper eye protection will help prevent cataracts.

9.0 WOODWORKING

9.1 The hazards associated with woodworking include sawdust inhalation, exposure to toxic solvents and adhesives, and excessive noise from woodworking tools. Long term inhalation of sawdust can cause chronic respiratory diseases. Depending on the type of wood, short term sawdust inhalation may also produce allergic reactions. Toxic preservatives, such as arsenic compounds and creosote, may cause cancer and reproductive problems. Epoxy resins and solvent-based adhesives, also pose potential hazards. Use dust collectors around woodworking machines, ensure proper ventilation, and wear personal protective equipment, as appropriate.
10. **TRAINING**

10.1 Students enrolled in the Department of Arts and Department of Theatre & Dance studies and shops are required to have documented safety training for hazards that they may encounter.
XIV. HAZARDOUS MATERIALS TRANSPORTATION

1.0 GENERAL

1.1 The US Department of Transportation (DOT) and the International Air Transport Association (IATA) have detailed regulations for shipping hazardous materials or dangerous goods. When shipping within the United States or internationally, it is critical to comply with all shipping regulations to protect the shipper, the carrier, and the environment to prevent stiff penalties from being imposed.

1.2 All ‘hazmat employees’ require some level of training specific to the transportation-related function they perform (i.e. classification, packaging, marking, labeling, paperwork, etc.). It is crucial that Texas A&M University-Corpus Christi (TAMU-CC) personnel responsible for shipping are properly trained to package and ship their materials.

2.0 REGULATIONS

2.1 The Hazardous Materials Regulation (HMR) Parts, 171 – 180 of Title 49 CFR contain all the regulations pertaining to the transport of hazardous materials. The purpose of the HMR is to provide the shipper with instruction on how to properly package, mark, label and document a hazardous material to be placed in commerce (i.e. ground, air, water and rail).

2.2 The International Air Transport Association’s Dangerous Goods Regulation is the guide that is recognized by all airlines that carry dangerous goods in all countries. This regulation provides procedures for the shipper and the operator by which Dangerous Goods can be safely transported by air on all commercial air transport.

2.3 Both regulations serve the same purpose, to provide safety to the shipper and carrier and to minimize the risk of contamination to the environment.

3.0 WHO NEEDS TRAINING?

3.1 A “hazmat employee” is a person who is employed by a hazmat employer (TAMU-CC) and who directly affects hazmat transportation safety. At TAMU-CC this is a person who:

- Loads, unloads, or handles hazardous materials;
▪ Classifies hazardous materials, prepares hazmat packages and/or shipping papers for transport by carriers; and/or
▪ Is responsible for safely transporting hazardous materials in university vehicles.
▪ Contact E,H&S for training information.

4.0 WHAT TRAINING IS OFFERED?

4.1 Only trained persons may ship or receive shipments of hazardous materials / dangerous goods.

▪ General Awareness – This training enables the employee to recognize and identify hazardous material shipments. The training is consistent with the hazard communication program required by 49 CFR.

▪ Dry Ice Shipping – This training is specific to shipments of Dry Ice. Dry Ice is a regulated hazardous material / dangerous good when shipped by air and therefore requires special packaging, marking and labeling.

▪ Limited Quantities – Limited quantities are shipments that must meet specific requirements (e.g. a specific amount) in order to be classified as a limited quantity shipment. This training will assist in classification, packaging, marking, labeling and documentation of a limited quantity shipment.

▪ Excepted Quantities – These shipments are materials that are less than 30 milliliters or 30 grams of a hazardous material. This training will assist in classification, packaging, marking, labeling and documentation of a limited quantity shipment.

▪ Function Specific Training – Function specific training is for individuals shipping specific hazardous materials repetitively and focuses on the needs of the shipper. This training is available as requested and developed for the specific needs of the shipper.

▪ HAZMAT Training – Each department that ships hazardous materials is encouraged to have at least one person attend the 40 hour Hazardous Materials Transportation course. The training consists of 24 hours of 49 CFR, eight hours of the IATA Dangerous
Goods Regulation, eight hours of Infectious Substance Training or Radioactive Material Training.

- Refresher Training – DOT requires refresher training every three years. IATA requires refresher training every two years. To ensure TAMU-CC meets the refresher training requirements as required by both regulations, the TAMUCC Hazardous Materials Shipping Program requires anyone shipping hazardous materials to be retrained every two years.

5.0 HAZARDOUS MATERIALS DEFINED

5.1 Hazardous materials mean a substance or material that the Secretary of Transportation has determined is capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and has been designated as hazardous under Section 5103 of the Federal Hazardous Materials Transportation Law (49 U.S.C. 5103). Hazardous materials, for the purpose of transportation, are those in one or more of the following groups:

- Explosive materials
- Gases
- Flammable liquids
- Combustible liquids
- Flammable or & water-reactive solids
- Oxidizers
- Poisonous materials
- Infectious materials
- Radioactive materials
- Corrosive materials
- Miscellaneous hazardous materials

6.0 DOT REQUIREMENTS SIMPLIFIED

6.1 The DOT regulations stipulate

- How a hazardous material is packaged (e.g., cardboard box, metal drum)
- How the package is marked—what words are written on the side
- How the package is labeled—what colored diamond-shaped label is applied
- How the material is described on shipping papers, which are required for shipment.

- This information is summarized in the Hazardous Material Table in section 172.101 of the DOT regulations.
- It is important to note that just because the material you are shipping is not listed in the hazardous materials table does not imply that the material you are shipping is not regulated.

- If you are unsure of the classification of your material, always contact EHS.

7.0 HAZARDOUS MATERIALS SHIPPING QUESTIONS

7.1 For assistance in resolving questions about the proper shipment of hazardous materials contact Environmental Health and Safety – (361) 825-5555. A complete copy of the Hazardous Material Shipping Program can be found on the University’s Environmental Health and Safety website at safety.tamucc.edu.
XV. HAZARDOUS WASTE

Disposal of hazardous materials is regulated by various federal and state agencies. Laboratory waste very often includes hazardous chemical, biological, or radiological materials. Thus, proper disposal of laboratory waste is not only prudent, it is mandatory. Environmentally sound disposal methods prevent harm to the water, land, and air and by extension, to people as well. Proper disposal techniques also protect waste handlers from harm.

Laboratory waste disposal can be broken down into five categories – hazardous (chemical) waste, biological waste, radioactive waste, glass waste, and metal (sharps) waste – which are discussed below.

1.0 HAZARDOUS CHEMICAL WASTE

The term “hazardous waste" refers to hazardous chemical waste. If waste chemicals contain infectious materials or biological hazards, the waste must be treated first as biological waste. Once the biological hazard has been eliminated, then the waste can be treated as hazardous waste. Any waste containing radioactive materials must be treated as radiological waste.

Disposal of hazardous waste is governed by the Environmental Protection Agency (EPA) and by the Texas Commission on Environmental Quality (TCEQ) through Federal and State regulations. TAMUCC complies with hazardous waste disposal regulations by following the TAMUCC Hazardous Waste Management Program and TAMUCC Rules, 24.01.04.M3 “Hazardous Waste Management Program.” For more information on hazardous waste disposal regulations and definitions, refer to this program.

Laboratory personnel can ensure compliance with the Hazardous Waste Management Program by following a few simple steps:

- Never dispose of chemicals improperly. Improper disposal includes
 - Pouring chemicals down the drain;
 - Leaving uncapped chemical containers in the fume hood to evaporate off the chemical; and
 - Disposing of chemicals in the regular trash.

- Collect waste in a leak proof container that is in good condition, that can be securely closed, and that is appropriate for the given chemical.
NOTE: If a large waste container (>10 gallons) is warranted, contact E,H&S for assistance.

- When reusing a container to collect chemical waste, completely deface or remove the original label.

- Label the container: The words “Hazardous Waste” must be written on the container or a Hazardous Waste Disposal Tag must be affixed to the container. (See “Hazardous Waste Disposal Tags and Waste Collection” below.)

- Identify the contents of the waste container on the container itself and on the tag (if attached). Example: Nitric Acid Waste, or Phenol Waste.

- Do not mix incompatible waste chemicals in a single container. Use separate waste containers for different waste streams.

- Do not overfill the waste container. For liquid hazardous waste:
 - Do not fill jugs and bottles past the shoulder of the container.

- Fill closed head cans (5 gallons or less), leaving approximately two inches of space between the liquid level and the top of the container.

- Fill closed head drums (larger than 5 gallons), leaving approximately four inches of space.

- For solid hazardous waste materials, do not fill beyond the weight capacity of the container, and leave at least two inches head space for closure.

- Keep waste containers closed. Waste containers should only be open when adding or removing material.

1.1 Hazardous Waste Disposal Tags and Waste Collection

When the waste container is ready for disposal, it should be tagged with a Hazardous Waste Disposal Tag. These tags may be obtained from E,H&S. Fill out the tag following the guidelines below:

- Completely fill out both the upper and lower sections of the tag. (This information is essential for record keeping.)
The "REQUESTOR" is the person in charge of the laboratory.
Use full chemical names or common names. Chemical formulas or abbreviations are not acceptable.
List all chemical components, including water. Long lists may be continued on the back of the tag.
Indicate the percent concentration of potentially explosive materials such as picric acid and nitro compounds.
Place additional hazard information in REMARKS.
Attach the tag to the container with a string which encircles the container. Rubber bands, tape, and wire are not acceptable.

NOTE: Do not fill in the Accumulation Start Date on the waste tag. E,H&S will date the tags after they pick up the waste containers.

The bottom section of the properly completed tag must be mailed to E,H&S at MS 4472. After the tag is received, the Hazardous Waste Management team will collect the waste.

NOTE: Some departments have satellite waste disposal areas, where waste containers may be accumulated for pick-up. If waste is taken to a satellite accumulation area, the waste tag should remain intact. For more information, contact E,H&S.

1.2 Disposing of Empty Chemical Containers

Empty chemical containers may be disposed of in the regular trash provided the following EPA requirements are met:

- Containers must not contain free liquid or solid residue.
- Containers must be triple rinsed.
- Product labels must be defaced or removed.
- Container lids or caps must be removed.

Render metal containers and plastic jugs unusable by punching holes in the bottom of the containers before disposing of them in the regular trash. (It is not necessary to break empty glass containers.)

IMPORTANT: Containers that do not meet the requirements mentioned here must be treated as hazardous waste.

Refer to the Hazardous Waste Management Program for more information on hazardous waste disposal procedures and regulations as well as information on waste reduction and minimization.
2.0 BIOLOGICAL WASTE

The Environmental, Health & Safety office oversees the handling and disposal of hazardous and non-hazardous biological waste as described in the document titled Management and Disposal of Biological Waste at Texas A&M University Corpus Christi University Corpus Christi. The Texas Department of State Health Services (TDSHS) and the Texas Commission on Environmental Quality (TCEQ) regulate the disposal of biohazardous materials. Biohazardous materials include organisms or substances derived from biological materials or organisms that may be harmful to humans, animals, plants, or the environment.

2.1 Biohazardous waste includes any waste materials that contain biohazardous materials, such as

- Waste (including blood) from and bedding or litter used by infectious animals
- Bulk human blood or blood products and waste materials contaminated with human blood
- Microbiological waste (including pathogen-contaminated disposable culture dishes and disposable devices used to transfer, inoculate, and mix pathogenic cultures)
- Biological pathogens
- Sharps
- Any recombinant (rDNA) materials and products of genetic manipulation

IMPORTANT: All biohazardous material must be decontaminated prior to disposal.

2.2 Biohazardous waste mixed with hazardous chemical or radioactive waste must be treated to eliminate the biohazard prior to disposal. After treatment, the waste can be managed as either hazardous chemical waste or as radiological waste.

There are strict safety requirements regarding segregation, labeling, packaging, treatment (including documentation), and transportation of biohazardous waste. The guidelines below should be followed:

- Do not mix biological waste with chemical waste or other laboratory trash.
- Segregate hazardous biological waste from nonhazardous biological waste.
- Clearly label each container of untreated biohazardous waste and mark it with the Biohazard Symbol.
- It is recommended to label nonhazardous biological waste as "NONHAZARDOUS BIOLOGICAL WASTE."

For information on biological waste treatment methods and disposal requirements, refer to Management and Disposal of Biological Waste at Texas A&M University Corpus Christi University Corpus Christi.

3.0 GLASS WASTE

Glassware should never be disposed of in the regular trash. Pasteur pipettes and broken glass can break through trash bags and cut individuals who handle trash. Follow these guidelines when disposing of broken glass:

- Do not pick up broken glass with bare or unprotected hands. Use a brush and dust pan to clean up broken glass. Remove broken glass in sinks by using tongs for large pieces and cotton held by tongs for small pieces and slivers.
- Glass contaminated with biological agents must be decontaminated by thermal or chemical treatment before disposal.
- Glassware contaminated with chemical or radiological materials must also be decontaminated prior to disposal. If decontamination is not possible, the glass should be disposed of as hazardous or radioactive waste.

Place non-contaminated broken glass in a rigid, puncture resistant container such as a sturdy cardboard box. Mark the box “Non-contaminated Broken Glass.” Once the box is three-quarters full, seal it shut. The box should then be placed in the dumpster by laboratory personnel. Custodial staff are not responsible for disposing of glass waste containers.

NOTE: If broken glass is commingled with metal sharps, it must be treated as sharps waste and encapsulated before for disposal.

4.0 METAL SHARPS

4.1 All materials that could cause cuts or punctures, must be contained, encapsulated, and disposed of in a manner that does not endanger other workers. Needles, blades, etc. are considered biohazardous even if they are sterile, capped, and in the original container. The following guidelines apply to handling and disposing of sharps:

- Metal sharps must be segregated from all other waste.
- Sharps that have been used with chemical or biological materials should be decontaminated prior to disposal whenever possible.
- Sharps that have radiological contamination must be disposed of as radiological waste.
- Dispose of sharps in a rigid container, such as a sturdy plastic jar or a metal can.
- When the container is three-quarters full, encapsulate the sharps with Plaster of Paris or some other solidifying medium.
- Once the contents are encapsulated, seal the sharps container, label it “Encapsulated Sharps,” and take it to the dumpster.

NOTE: Laboratory personnel are responsible for sharps disposal. Custodial staff are **not** responsible for encapsulating and/or disposing of metal sharps waste.

5.0 RADIOACTIVE WASTE

Radioactive materials, depending upon the license, are regulated by the State of Texas or the Nuclear Regulatory Commission, and these regulations/rules are enforced by E,H&S’s Radiological Safety Program. All radioactive wastes shall be disposed through E,H&S or via written procedures approved by E,H&S. Contact E,H&S for more information on proper disposal of radiological waste.
XVI. HEARING CONSERVATION

1.0 Excessive noise levels may permanently damage a person's hearing. Whenever possible, employees should avoid noise exposure or reduce noise to an acceptable level. The following table outlines ACGIH limits for acceptable noise exposure indicated as decibels (dB) and time limits. At no time should any exposure to continuous, intermittent, or impact noise in excess of 140 dB be allowed.

<table>
<thead>
<tr>
<th>Duration/Day (Hours)</th>
<th>Sound Level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>1/2 (30 minutes)</td>
<td>97</td>
</tr>
<tr>
<td>1/4 (15 minutes)</td>
<td>100</td>
</tr>
<tr>
<td>7 minutes</td>
<td>103</td>
</tr>
<tr>
<td>3 minutes</td>
<td>106</td>
</tr>
<tr>
<td>1 minute</td>
<td>109</td>
</tr>
<tr>
<td>Less than 1 minute</td>
<td>112 +</td>
</tr>
</tbody>
</table>

1.1 Hearing loss can be permanent — wear protective equipment when noise levels are high.

1.2 Before using personal protective equipment, such as ear plugs or muffs, to reduce noise exposure, try to reduce noise levels by changing work procedures. Maintenance practices such as the following can reduce noise levels:

- Replacing worn or loose machine parts
- Performing high-noise operations during hours when people are less likely to be affected
- Maintaining and lubricating equipment to eliminate rattles and squeaks
- The following table from the CDC illustrates various noise levels:
1.3 Engineering controls, such as the following, can also reduce noise levels:

- Replacing noisy materials
- Using large, low speed fans
- Considering the noise level of new equipment or processes before purchasing or implementing
- Placing heavy machines on rubber mountings
- Using sound-absorbing acoustical tiles or baffles
- Placing noisy machinery or operations in a separate area or room
- Enclosing noisy conveyors
- Provide and maintain signage at entrances to high noise areas

1.4 Areas that may require hearing protection include machine shops, the power plant, landscape maintenance, etc. Supervisors should insure that a variety of hearing protection is provided to allow employees sufficient choice. Observe all warning signs and wear hearing protection whenever necessary. Do not interfere with, remove, or modify noise abatement equipment. Keep all equipment properly maintained, and report any malfunctions immediately.

1.5 Refer to the chapter on Personal Protective Equipment for more information on hearing protection. Direct all questions regarding hearing conservation to Environmental, Health & Safety.
1.0 HEAT RELATED ILLNESSES

1.1 Heat Stress and Strain
People may suffer from heat related illnesses at any time of the year but particularly during hot, humid conditions. Because the climate at TAMU-CC is conducive to these conditions, people must take preventive measures to reduce their risk. To prevent heat related illness, supervisors must assist workers in acclimating to conditions which could cause heat related illness. Employees should limit strenuous physical activity during the hottest portion of the day, wear a brimmed hat when in the sun, take frequent breaks, and drink plenty of fluids.

1.2 Examples of heat related illnesses are heat exhaustion, heat stroke, heat cramps, dehydration and heat rash.

1.3 Heat Exhaustion
- Heat exhaustion is usually caused by strenuous physical activity and hot, humid conditions. Because heat exhaustion is the body’s response to insufficient water and salt, it should be treated as quickly as possible.

- Signs and symptoms of heat exhaustion include the following:
 - Exhaustion and restlessness
 - Headache
 - Dizziness
 - Nausea
 - Cold, clammy, moist skin
 - Pale face
 - Cramps in abdomen and lower limbs
 - Fast, shallow breathing
 - Rapid, weak pulse
 - Falling body temperature
 - Fainting

- Take the following steps to administer first aid for heat exhaustion:
 - Have the victim lie down in a cool or shaded place.
 - If the victim is conscious, have him/her slowly sip cool water.
 - If the victim is unconscious or is conscious but does not improve, seek medical aid as soon as possible.
- If the victim is sweating profusely, have him or her sip cool water that contains one teaspoon of table salt per pint of water

1.4 Heat Stroke

- Heat stroke is usually caused by exposure to extreme heat and humidity and/or a feverish illness. Heat stroke occurs when the body can no longer control its temperature by sweating. Heat stroke is extremely dangerous and may be fatal if not treated immediately.

- The signs and symptoms of heat stroke include the following:
 - Red, hot, and dry skin
 - Throbbing headache
 - Dizziness and light-headedness
 - High temperature
 - Rapid heartbeat, which may be weak or strong
 - Rapid, shallow breathing
 - Muscle weakness or cramps
 - Unconsciousness

- Immediately take the following steps to administer first aid for heat stroke:
 - If possible, move the victim to a cool place.
 - Seek medical attention as soon as possible.
 - Remove the victim’s clothing.
 - If the victim is conscious, place him in a half-sitting position and support the head and shoulders.
 - If the victim is unconscious, place him on the side with the head facing sideways.
 - Fan the victim and sponge the body with cool water.

- Environmental factors
 - Air temperature
 - Humidity
 - Radiant heat source
 - Air circulation
 - Work related factors
 - Work load

 Type of work
 * Level of physical activity
 * Time spent working
• **Clothing**
 - Weight (heavy vs. breathable)
 - Color (dark vs. light)
 - Personal protective equipment and clothing

• **Personal factors**
 - Age
 - Weight/fitness
 - Use of drugs, alcohol, caffeine, medication
 - Prior related illness

• **Prevention**
 - Drink plenty of fluids
 * Don’t rely on your thirst
 * Drink 5-7 ounces every 20 minutes
 - Acclimatization: adjust to the heat
 * The body takes 3-5 days to get used to the heat
 * Be careful if returning from vacation or absence
 - Choose proper clothing
 * Choose light colors and lightest weight possible
 * Select proper personal protective equipment
 - Take heat into account when scheduling tasks
 * Implement work/rest cycles
 * Conduct heaviest tasks early morning or dusk
 - Eat properly
 - Sleep and rest
XVIII. HOT WORK PERMITS

1.0 PURPOSE
To establish procedures defining a system of control that will allow work involving possible sources of ignition to be carried out safely, eliminating the danger of fire to surrounding areas.

2.0 SCOPE
This program applies to all employees and contractors conducting hot work on TAMU-CC premises.

NOTE: Areas permanently established and arranged to conduct hot work are exempt. Those areas will be inspected once a year.

3.0 REFERENCE
▪ TAMU-CC Hot Work Permit Policy
▪ NFPA 51B, Standard for Fire Prevention during welding, cutting, and other hot works
▪ 29 CFR 1910.251-255

4.0 DEFINITIONS

4.1 Hot Work - Any work which produces open flames, heat, and/or sparks that could ignite materials in the work area.

4.2 Hot Work Permit: A mean to communicate fire hazards and recordkeeping of activities that involve hot work. TAMU-CC uses the Factory Mutual forms.

4.3 Combustible - A material capable of sustaining burning when ignited and in the presence of air.

4.4 Flammable - A liquid having a flashpoint below 100 degrees Fahrenheit.

4.5 Hot Work Operator – A person who operates welding, brazing, grinding, and/or cutting equipment.

4.6 Fire Watch - A person who has been trained to use fire extinguishers and familiar with inherent hazards of the work site and of the hot work operation, the closest exit routes from the building, and the pull stations.
4.7 Permit Authorizing Individual (PAI) – E,H&S personnel knowledgeable in hot work operation and are capable to identify site-specific flammable and combustible materials, fire hazards, or hazardous processes present or likely to be present in a hot work area.

5.0 POLICY

5.1 A Hot Work Permit is required for any temporary operation involving open flames or producing heat and/or sparks. This includes, but is not limited to: brazing, cutting, grinding, soldering, torch applied roofing, and welding when the hot work is done outside of a designated hot work area.

5.2 An area classified and marked as a “Designated Hot Work Area” must meet the following criteria:
The area is a non-combustible fire resistant construction, essentially free of combustible and/or flammable materials.

- The area is segregated from adjacent areas.
- The area is equipped with at least one fire extinguisher.
- The area is evaluated, approved, and inspected periodically by E,H&S.

5.3 On campus the following areas are “Designated Hot Work” areas:
- Motor Pool building, bays 2, 3, and 4. All combustible materials must be stored in the storage room or at 35 feet radius from the hot work area
- Science and Engineering building, room number 114 (south east corner)
- Center for the Arts building, room number 116
- Central Plant, Main room
- Plumber shop in Facilities Services

5.4 The Permit Authorizing Individual (PAI) is responsible to:
- Ensure all flammable and/or combustible materials are at least 35 feet radius clearance from the hot work area or that they will be fully covered with fire resistive blankets
- Determine if a fire watch is required.
- The PAI cannot be the person doing the hot work

5.5 A Fire Watch must be posted by a PAI if any of the following conditions exist:
- Combustible materials cannot be removed or fully covered with fire resistive blankets or screen from within 35-foot radius of the hot work
• Wall or floor opening within a 35-foot radius of hot work expose combustible materials in adjacent areas, including concealed spaces in walls or floors
• Combustible materials are adjacent to the opposite site of partitions, walls, ceilings or roofs and are likely to be ignited
• Any other condition that is deemed necessary by the PAI
• If a building does not have a fire sprinkler system.

5.6 The Fire Watch is responsible to:
• Remain present and undistracted during hot work operations
• Be alert for any condition that could lead to a fire, including possible problems in adjacent areas
• Guard passersby from welding hazards
• Interrupt the work if a hazardous condition develops, and deal with the situation appropriately
• Remain on the scene for at least thirty minutes after completion of hot work in order to detect, extinguish or report a fire resulting from stored heat or sparks
• If required by PAI, return to the scene one hour after the hot work is completed to give a final check to ensure there is not a fire hazard in the area, sign the permit, and return the permit to E,H&S office.

5.7 Hot Work Permits are not required when hot work is done in an exterior area that is at least 35’ away from buildings and at least 35’ away from any flammable and/or combustible materials including trees, bushes, or dried grass.

5.8 The following operations do not require a Hot Work Permit:
• Bunsen burners in laboratories
• Fixed grinding wheels
• Electric soldering irons

6.0 PROCEDURE

6.1 The hot work operator is responsible to request a Hot Work Permit, by calling E,H&S at ext. 5555, when he/she performs hot work outside of a designated hot work area at any times.

6.2 A permit is issued by a Permit Authorizing Individual (PAI).

6.3 The hot work operator is responsible to prepare the work area according to the permit requirements.

6.4 If an alarm system bypass is required, only an official designee of the TAMU-CC Facilities Services may temporarily bypass the fire alarm system. Specific devices or sections of the system required to be
bypassed will be determined by the Facilities Services technician performing the bypass. All bypassed alarm systems must be restored by 5:00pm Monday through Friday, or have a designated fire watch posted.

6.5 The hot work permit issuer is responsible to complete the FM Global Hot Work Permit and make sure all applicable conditions satisfy the requirements from the permit. If any of the applicable conditions does not meet the requirements, the hot work is not allowed.

6.6 Floor openings or drains must be adequately covered to prevent slag or sparks from falling to the area below or entering drains. In the case of the work being performed in an elevated area, the area below shall be barricaded.

6.7 In areas where heavy dust may be present, the dust accumulation must be cleaned prior to the start of work.

6.8 The hot work permit is only valid for one day and within the period permitted.

6.9 The signed permit shall be maintained on the job site at all times during the work.

6.10 When the work is completed, the area shall be returned to normal condition.

6.11 Hot Work is not allowed in:

- In areas where flammable vapors may be present within a minimum 50’ radius
- The immediate vicinity of any pipe line, valve, fitting, vessel or equipment that contains or has contained a flammable or combustible liquid or gas
- Areas where the Lower Explosive Limit (LEL) reading is above 0%.
XIX. LABORATORY SAFETY

1.0 INTRODUCTION

It is the policy of Texas A&M University-Corpus Christi to provide and maintain a safe environment for its faculty, staff, students, and visitors.

Environmental, Health & Safety (E,H&S) is committed to working with faculty and staff to ensure that campus laboratories are a safe place in which to work and learn. With over 80 laboratories on the Texas A&M University-Corpus Christi campus, laboratory safety is an enormous aspect of overall campus safety. It is the responsibility of all who work or study in laboratories to do so in a safe and environmentally responsible manner.

E,H&S has established this Laboratory Safety Manual as a resource for faculty and laboratory personnel, as well as anyone interested in laboratory safety. This manual is intended to comply with federal, state, and local regulations, as well as industry best practices. The Laboratory Safety Manual is a compilation of suggested work practices, protocols, and procedures to work safely in TAMU-CC laboratories. The document is not exhaustive and should not be considered the only reference for health and safety concerns. In addition to this manual, Environmental Health and Safety is always available to address health and safety concerns.

- Laboratory Safety incorporates safety principles from a variety of areas, including fire and life safety, chemical safety, biological safety and radiation safety. The hazards encountered in a laboratory touch every field in safety and may be similar, although potentially greater in quantity or severity, to hazards encountered in the average home or workplace.

- Environmental, Health and Safety works with the departments to ensure that safe practices are utilized and that state and national safety standards or requirements are followed. This is accomplished through conducting laboratory inspections, testing of chemical fume hoods and other safety equipment, and providing general laboratory safety training. Also, the E,H&S Department provides assistance to lab personnel for any lab related issue, from making recommendations on how to work more safely to providing chemical monitoring.

- This document contains information on the different hazards that may be found in laboratories - including chemical hazards, physical hazards, biological hazards and radiological hazards, how to minimize the risks
associated with those hazards, how to protect lab workers when working in a laboratory, and how to plan for an emergency situation in the laboratory.

- For specific questions relating to Laboratory or Chemical Safety, contact the E,H&S Department at University extension 5555.

1.1 CONTACT INFORMATION

Emergency

In case of an emergency contact the University Police Department (UPD) by dialing 911 or 4444 from any campus phone. If 911 is dialed from a cell phone notify UPD at 361-825-4444 so they can assist with the emergency.

Non-emergency

- Ethics Point: 1-888-501-3850. This anonymous tip line may be called to report risk (generally unsafe conditions) or misconduct (waste of campus resources, fraud, etc.) on campus.
- University Police Department (UPD): 361-825-4444.
- Environmental, Health & Safety (E,H&S): 361-825-5555.

1.2 E,H&S LABORATORY SAFETY - PROGRAMS AND SERVICES

Programs and services provided by the Environmental, Health, and Safety office include the following:

- Develop policies and protocols concerning safety and health issues.
- Disseminate information concerning safety regulations, policies, protocols, and practices to members of the TAMU-CC community.
- Evaluate facilities through laboratory safety inspections. These evaluations help assure compliance with safety and health regulations, protocols, and practices in order to maintain safe work environments.
- Respond to emergencies such as gas odors or chemical spills.
- Measure environmental parameters such as chemical vapors or noise.
- Provide the TAMU-CC Hazard Communication Program as required by the Texas Hazard Communication Act.
• Develop and provide safety-related training, including the Introduction to Laboratory Safety Training course (which includes general Hazard Communication Training).
• Investigate reported laboratory accidents, especially those resulting in injury, to evaluate for trends. Recommend action with the purpose of reducing the likelihood of another accident.
• Provide technical guidance on matters of laboratory safety.
• Assist laboratory personnel in the development of a Plan of Action for responding to incidents in the laboratory.
• Participate in safety committees and task forces.
• Assist laboratory personnel in evaluating, preventing, and controlling hazards.
• Oversee the adoption and implementation of all TAMU-CC health and safety policies.
• Submit reports and other required documentation to pertinent State agencies, including the TIER II report.

1.3 LABORATORY NON-COMPLIANCE AND SAFETY POLICIES

NON-COMPLIANCE of Lab Safety Regulations

Students will receive the following reprimands for non-compliance of the listed safety regulations:

• 1st Violation: The student will receive a verbal and written warning indicating non-compliance, unless severity of the violation warrants immediate removal with a failing grade issued to student.
• 2nd Violation: The student will be asked to leave the lab and may receive a 0 (zero) for that lab exercise
• 3rd Violation: The student will be asked to leave permanently and may receive a failing grade for the lab course.

Violations will be issued by the Laboratory Coordinator using the TAMU-CC Incident/Safety Violation Report form.

STUDENT/INSTRUCTOR SAFETY POLICIES

BIOLOGY, MICROBIOLOGY and BIOMEDICAL INSTRUCTIONAL LABORATORY SAFETY POLICY (2016 Revision)
Instructors and students shall comply with the following safety standards while present in a TAMU-CC Biology and Microbiology Instructional Laboratories.

EMERGENCY:
1. In all emergency cases, call University Police Department (UPD) at ext. 4444 from the black phone inside the lab. If an ambulance is needed, alert UPD.
2. When the fire alarm sounds or when there is a fire, instruct the class to shut off any ignition sources, evacuate the class calmly and orderly to a location outside of the building and stay at least 100 feet from the building until an “ALL CLEAR” is given by UPD.

HYGIENE:
1. **FOOD INCLUDING CHEWING GUMS, DRINKS, TOBACCO PRODUCTS, AND COSMETIC USAGE ARE PROHIBITED AT ALL TIMES.**
2. Mouth Pipetting is prohibited - use mechanical pipettes.

LABORATORY SAFETY PROCEDURES:
1. No horseplay (pushing, shoving, prank, etc.) is allowed.
2. Never work alone in the laboratory. All work shall be performed with a partner. The Lab Coordinator, Teaching Assistant or the Instructor must be around to check on the students.
3. Begin experiments only as directed by the Instructor.
4. No unauthorized or unsupervised experiments are to be performed.
5. Wear disposable gloves when working with chemicals or performing biohazardous tasks. To prevent cross-contamination remind students not to touch any personal items while wearing gloves.
6. Wear splash goggles when working with or near chemical hazards.
7. Wear splash goggles when examining specimens from the jars. Splash goggles are also required when removing and returning specimens to the jar.
8. Perform procedures involving potentially volatile or toxic chemicals under a vent hood.
9. Dispose of sharps (needles, scalpels, broken slides, etc.) in a sharps container on the bench top.
10. Dispose of non-biohazardous broken glass in the broken glass container. Do not place broken glass into the trash can.
11. Do not re-sheath needles.
12. Perform all procedures carefully to minimize splashes and aerosols.
13. Decontaminate the work surfaces with disinfectants that are effective against the agent of concern on completion of the lab session, at the end of the day and after any spills or splashes of viable material.
14. Wash their hands after removing gloves and before leaving the laboratory.

SAFETY EQUIPMENT: Know the location of the following:
1. Fire extinguisher
2. Safety shower
3. Eye wash station
4. Fire blanket
5. First Aid Kit
6. Safety Data Sheet Binder
7. Chemical Spill kit

PROPER ATTIRE - The following is required AT ALL TIMES upon entering a Biology or Microbiology lab, regardless of class activities (lectures, meeting, or lab practices.)
1. Wear lab coats.
2. Wear long pants that meet the shoes.
3. Wear closed-toe closed-heel shoes, no high heels or platform shoes.
4. Tie back long hair & head scarves.
5. Ensure students wear proper attire upon entering the laboratory.

HOUSEKEEPING PROCEDURES:
1. Stow books and all personal items in the lab cabinet, lockers outside the lab, or under the bench tops if lab cabinets or lockers are not available.
2. Keep aisles clear of materials to prevent slip, trip and fall hazards.
3. Report all spills or leaks immediately to you.
4. Clean their glassware and bench tops at the conclusion of the lab.
5. Properly label & dispose of all waste. Details for disposal is located at http://safety.tamucc.edu.
6. Properly dispose of chemicals.
7. Students are responsible for cleaning their glassware and bench top at the end of the lab session.

CHEMICAL SPILL CLEAN UP
1. Instructors should know where the spill kit is in the lab and how to clean up a small spill (up to a quart container).
2. For larger spills, contact the Lab Coordinator.

LABORATORY SAFETY TRAINING:
1. Access to a lab is limited only to students registered and who have completed the required online Laboratory Safety Orientation assignment in Blackboard.
2. All students must complete the online Lab Safety Orientation before the twelfth day of class.

ACCIDENT REPORTING:
1. For safety reasons all accidents involving students, visitors, tenants, and employees should be reported regardless of severity to the University Police Department (UPD). Medical emergency matters will be handled by the UPD.
2. Employees must report accidents to their supervisor who will complete the Employer’s First report of injury or illness form. To access the form: http://hr.tamucc.edu.
3. Visitors, Students, Tenants and/or non TAMU-CC Employees should complete the incident/injury form for Non-TAMUCC Employees. Submit this form to E,H&S, NRC Building, Suite 1100, Unit 5876. To access the form: http://safety.tamucc.edu.
CHEMISTRY INSTRUCTIONAL LABORATORY
SAFETY POLICY (2016 Revision)

Instructors and students shall comply with the following safety standards while present in a TAMU-CC Chemistry Instructional Laboratories.

EMERGENCY:
1. In all emergency cases, call University Police Department (UPD) at ext. 4444 from the black phone inside the lab. If an ambulance is needed, alert UPD.
2. When the fire alarm sounds or when there is a fire, instruct the class to shut off any ignition sources, evacuate the class calmly and orderly to a location outside of the building and stay at least 100 feet from the building until an “ALL CLEAR” is given by UPD.

HYGIENE:
1. FOOD INCLUDING CHEWING GUMS, DRINKS, TOBACCO PRODUCTS, AND COSMETIC USAGE ARE PROHIBITED AT ALL TIMES.
2. Mouth Pipetting is prohibited - use mechanical pipettes.

LABORATORY SAFETY PROCEDURES:
1. No horseplay (pushing, shoving, prank, etc.) is allowed.
2. Never work alone in the laboratory. All work shall be performed with a partner. The Lab Coordinator, Teaching Assistant or the Instructor must be around to check on the students.
3. Lab experiments will begin only as directed by you, the Instructor.
4. No unauthorized or unsupervised experiments.
5. Wear disposable gloves when working with chemicals.
6. Wear splash goggles when chemicals are present in the laboratory.
7. Procedures involving potentially volatile chemicals must be performed under a vent hood.
8. Dispose of broken glass in the broken glass container. Do not place broken glass into the trash can.
9. Students must wash their hands after removing gloves and before leaving the laboratory.

SAFETY EQUIPMENT:
1. Fire extinguisher
2. Safety shower
3. Eye wash station
4. Fire blanket
5. First Aid Kit
6. Safety Data Sheet Binder
7. Chemical Spill kit

PROPER ATTIRE:
The following is required AT ALL TIMES upon entering a Chemistry lab, regardless of class activities (lectures, meeting, or lab practices.)
1. Wear lab coat.
2. Wear long pants that meet the shoes.
3. Wear closed-toe closed-heel shoes, no high heels or platform shoes.
4. Tie back long hair & head scarves.
5. Ensure your students wear proper attire upon entering the laboratory.

HOUSEKEEPING PROCEDURES:
1. Stow books and all personal items in the lab cabinets, outside the lab, or under the bench tops.
2. Keep aisles clear of materials to prevent slip, trip and fall hazards.
3. Report all spills or leaks immediately to you.
4. Clean up their glassware and bench tops at the conclusion of the lab.
5. Properly label & dispose of all wastes. Details for disposal is located at http://safety.tamucc.edu/Environmental.html
6. Properly dispose of chemicals.
7. Students are responsible for cleaning their glassware and bench top at the end of the lab session.

CHEMICAL SPILL CLEAN UP
1. Instructors should know where the spill kit is in the lab and how to clean up a small spill (up to a quart container).
2. For larger spill, contact the Lab Coordinator.

LABORATORY SAFETY TRAINING:
1. Access to a lab is limited only to students registered and who have completed the required online Laboratory Safety Orientation assignment in Blackboard.
2. All students must complete the online Lab Safety Orientation before the twelfth day of class.

ACCIDENT REPORTING:
1. For safety reasons all accidents involving students, visitors, tenants, and employees should be reported regardless of severity to the University Police Department (UPD). Medical emergency matters will be handled by the UPD.
2. Employees must report accidents to their supervisor who will complete the Employer’s First report of injury or illness form. To access the form: http://hr.tamucc.edu/Faculty_Staff_Resources/HR_Forms.html.
3. Visitors, Students, Tenants and/or non TAMU-CC Employees should complete the incident/injury form for Non-TAMUCC Employees. Submit this form to E,H&S, NRC Building, Suite 1100, Unit 5876. To access the form: http://safety.tamucc.edu/S/Forms/Forms.html.
4.
GEOLOGY INSTRUCTIONAL LABORATORY
SAFETY POLICY (2016 Revision)

Instructors and students shall comply with the following safety standards while present in a TAMU-CC Geology Instructional Laboratory.

EMERGENCY:
1. In the event any accident or emergency, call University Police Department (UPD) at ext. 4444 from the black phone inside the lab. If an ambulance is needed, alert UPD.
2. When the fire alarm sounds or when there is a fire, shut off any ignition sources, evacuate the class calmly and orderly to a location outside of the building and stay at least 100 feet from the building until an “ALL CLEAR” is given by UPD.

HYGIENE:
1. FOOD INCLUDING CHEWING GUMS, DRINKS, TOBACCO PRODUCTS, AND COSMETIC USAGE ARE PROHIBITED IN THE LAB AT ALL TIMES.
2. Mouth Pipetting is prohibited – use mechanical pipettes.

LABORATORY SAFETY PROCEDURES:
1. No horseplay (pushing, shoving, pranks, etc.)
2. Never work alone in the laboratory. All work shall be performed with a partner. The Lab Coordinator, Teaching Assistant or the Instructor must be around to check on the students.
3. Lab experiments will begin only as directed by Instructor.
4. No unauthorized or unsupervised experiments.
5. When chemicals are utilized in the laboratory the following items are required: lab coat, long pants, splash goggles, and disposable gloves. To prevent cross contamination do not touch any personal items while wearing gloves.
6. Wear splash goggles when chemicals are present in the laboratory.
7. Dispose of broken glass in the broken glass container. Do not place broken glass into the trash can.
8. Students must wash their hands after removing gloves and before leaving the laboratory.

SAFETY EQUIPMENT:
Students should know the location of the following:
1. Fire extinguisher
2. Safety shower
3. Eye wash station
4. Fire blanket
5. First Aid Kit
6. Safety Data Sheet Binder
7. Chemical Spill kit

PROPER ATTIRE:
The following is required AT ALL TIMES upon entering a Geology lab, regardless of class activities (lectures, meeting, or lab practices.)
1. Wear closed-toe closed-heel shoes.
2. Tie back long hair & head scarves.
HOUSEKEEPING PROCEDURES:
1. Stow books and all personal items in the lab cabinets, outside the lab, or under the bench tops.
2. Keep aisles clear of materials to prevent slip, trip and fall hazards.
3. Report all spills or leaks immediately to the Instructor.
4. Students are responsible for cleaning their glassware and bench tops at the conclusion of the lab.
5. Properly label & dispose of all waste as directed by the Instructor. Details for disposal is located at http://safety.tamucc.edu/Environment.html.
6. Properly dispose of chemicals.
7. Students are responsible for cleaning their glassware and bench top at the end of the lab session.

LABORATORY SAFETY TRAINING:
1. Access to a lab is limited only to students registered and have completed the required online Laboratory Safety Training assignment in Blackboard.
2. All students must complete the online Lab Safety Orientation before the twelfth day of class and present instructor with printout completion.

ACCIDENT REPORTING:
1. For safety reasons all accidents involving students, visitors, tenants, and employees should be reported regardless of severity to the University Police Department (UPD). Medical emergency matters will be handled by the UPD.
2. Employees must report accidents to their supervisor who will complete the Employer's First report of injury or illness form. To access the form: http://hr.tamucc.edu/Faculty_Staff_Resources/HR_Forms.html.
3. Visitors, Students, Tenants and/or non TAMU-CC Employees should complete the incident/injury form for Non-TAMUCC Employees. Submit this form to E,H&S, NRC Building, Suite 1100, Unit 5876. To access the form: http://safety.tamucc.edu/S/Forms/Forms.html.
PHYSICS INSTRUCTIONAL LABORATORY
SAFETY POLICY (2016 Revision)

Instructors and students shall comply with the following safety standards while present in a TAMU-CC Physics Instructional Laboratory.

EMERGENCY:
1. In the event any accident or emergency, call University Police Department (UPD) at ext. 4444 from the black phone inside the lab. If an ambulance is needed, alert UPD.
2. When the fire alarm sounds or when there is a fire, shut off any ignition sources, evacuate the class calmly and orderly to a location outside of the building and stay at least 100 feet from the building until an “ALL CLEAR” is given by UPD.

HYGIENE:
1. FOOD INCLUDING CHEWING GUMS, DRINK, TOBACCO PRODUCTS, AND COSMETIC USAGE ARE PROHIBITED IN THE LAB AT ALL TIMES.
2. Mouth Pipetting is prohibited – use mechanical pipettes.

LABORATORY SAFETY PROCEDURES:
1. No horseplay (pushing, shoving, pranks, etc.)
2. Never work alone in the laboratory. All work shall be performed with a partner. The Lab Coordinator, Teaching Assistant or the Instructor must be around to check on the students.
3. Lab experiments will begin only as directed by Instructor.
4. No unauthorized or unsupervised experiments.
5. Dispose of broken glass in the broken glass container. Do not place broken glass into the trash can.
6. Students must wash their hands after removing gloves and before leaving the laboratory.

SAFETY EQUIPMENT: Students should know the location of the following:
1. Fire extinguisher
2. Safety shower
3. Eye wash station
4. Fire blanket
5. First Aid Kit
6. Safety Data Sheet Binder
7. Chemical Spill kit

PROPER ATTIRE: The following is required AT ALL TIMES upon entering a Physics lab, regardless of class activities (lectures, meeting, or lab practices.) Students will:
1. Wear closed-toe closed-heel shoes.
2. Tie back long hair & head scarves.
HOUSEKEEPING PROCEDURES:

1. Stow books and all personal items in the lab cabinets, outside the lab, or under the bench tops.
2. Keep aisles clear of materials to prevent slip, trip and fall hazards.
3. Report all spills or leaks immediately to the Instructor.
4. Students are responsible for cleaning their glassware and bench tops at the conclusion of the lab.
5. Properly label & dispose of all waste as directed by the Instructor. Details for disposal is located at http://safety.tamucc.edu/Environment.html.
6. Properly dispose of chemicals as directed by the Instructor.
7. Students are responsible for cleaning their glassware and bench top at the end of the lab session.

LABORATORY SAFETY TRAINING:

1. Access to a lab is limited only to students registered and have completed the required online Laboratory Safety Training assignment in Blackboard.
2. All students must complete the online Lab Safety Orientation before the twelfth day of class and present instructor with printout completion.

ACCIDENT REPORTING:

1. For safety reasons all accidents involving students, visitors, tenants, and employees should be reported regardless of severity to the University Police Department (UPD). Medical emergency matters will be handled by the UPD.
2. Employees must report accidents to their supervisor who will complete the Employer’s First report of injury or illness form. To access the form: http://hr.tamucc.edu/Faculty_Staff_Resources/HR_Forms.html.
3. Visitors, Students, Tenants and/or non TAMU-CC Employees should complete the incident/injury form for Non-TAMUCC Employees. Submit this form to E,H&S, NRC Building, Suite 1100, Unit 5876. To access the form: http://safety.tamucc.edu/S/Forms/Forms.html.
1.4 LABORATORY SAFETY IS EVERYONE’S RESPONSIBILITY

Ensuring laboratory safety is an endeavor of many individuals on the TAMU-CC campus, including deans, department heads, faculty, and staff. Anyone providing direct or administrative oversight of laboratory facilities is responsible for maintaining safety in those areas. Specific responsibilities are as follows.

RESPONSIBILITIES OF THE E,H&S

E,H&S has a variety of responsibilities, as outlined above. Provided below is more detailed information on some of those responsibilities.

Laboratory Inspections

E,H&S is responsible for conducting safety inspections in all campus laboratory facilities. Inspections are conducted at the beginning of the fall semester and as needed or requested. The E,H&S uses a laboratory inspection form when conducting laboratory safety inspections.

When conducting laboratory inspections faculty members and/or laboratory coordinators are welcome to be present. However, if the appropriate contact is unavailable or is unresponsive, E,H&S will proceed with the safety inspection. E,H&S may conduct unannounced safety inspections or accident investigations. Please be aware that federal, state and local inspectors may also conduct unannounced inspections.

Reporting Laboratory Inspection Results

Following the laboratory inspection, a Laboratory Safety Evaluation report listing noted safety violations is sent to the person responsible for the laboratory (a principal investigator (PI), laboratory manager or coordinator, etc.). The PI is responsible for correcting or coordinating correction of the safety violations noted in the evaluation report. Inspection items will be identified either as a Deficiency, as an Item of Concern, or as Information.

Items designated as:

- (Red) **Deficiencies** are in violation of safety codes and/or are significant hazards and must be corrected within 45 days of the date the inspection report is sent. After that time, the laboratory will be re-inspected to ensure compliance.
• (Yellow) **Items of Concern** are in conflict with the TAMU-CC Safety Manual and/or good laboratory practices. These items should be corrected expeditiously and will be re-evaluated at the next annual inspection.

• (Green) **Information** indicate that the issue is not an immediate safety concern, but the information provided can help make the work area safer for laboratory personnel and/or emergency responders.

If a Laboratory Safety Evaluation indicates there are significant hazards (Red) (Deficiencies), the laboratory will be re-inspected by E,H&S to verify that these hazards have been mitigated. This inspection will take place arbitrarily after the initial evaluation report is sent. The Laboratory Safety Evaluation report will be updated to show which deficiencies have been corrected and the date this was verified. The updated report will be sent to the PI. Following re-inspection, E,H&S will send a letter to the college dean, the department chair, and the PI. This letter will indicate whether or not all significant deficiencies noted in the original inspection report have been corrected.

In addition to E,H&S inspections, laboratory personnel should routinely conduct inspections of their work areas to ensure continued compliance with safety requirements.

Fume Hood Inspections
Chemical fume hoods will be tested by a qualified vendor on an annual basis. Fume hood certification reports will be sent to the designated laboratory contact. Fume hoods that pass testing will have a certification sticker affixed to them, indicating the date of testing. If a fume hood does not pass testing requirements, a sign will be posted on the fume hood indicating that it is not to be used.

NOTE: Signs indicating a fume hood is inoperable may only be removed by E,H&S personnel.

Biological Safety Cabinet and Laminar Flow Hood Certifications
To schedule certification of a biological safety cabinet or laminar flow hood, contact the laboratory manager/coordinator.

Laboratory Construction and Renovation Projects
In order to ensure the safety of new and renovated laboratories, specific design and construction features are required by state and federal codes, all plans for design, construction, and Facility Modification Request (FMR) to laboratory facilities must be reviewed by Environmental, Health & Safety.
RESPONSIBILITIES OF TAMU-CC ADMINISTRATION, PERSONNEL, AND STUDENTS

Environmental, Health & Safety: EHS is responsible for the following:
 a. Developing and approving appropriate safety policies.
 b. Recommending changes to improve the safety environment and/or correct safety concerns.
 c. Ensuring employees with the applicable administrative location (adloc) have been assigned and completed Texas Hazard Communication and Bloodborne Pathogen training in TrainTraq.

TAMU-CC Administrators, Including Deans
Deans or their delegates are responsible for the following:
 a. Providing and maintaining the facilities and equipment required for a safe work environment.
 b. Establishing methods for disseminating safety information and policies.
 c. Establishing criteria for implementing safety policies and protocols.
 d. Establishing a system for safety accountability.
 e. Ensuring that uncorrected significant safety issues are immediately resolved.

Department Chairs and Directors
Department Chairs and Directors are responsible for promoting safety and loss prevention by:
 a. Controlling or eliminating occupational hazards.
 b. Conducting periodic safety and loss control evaluations, including those necessary for teaching laboratories.
 c. Ensuring that employees are adequately trained in safety policies and protocols and maintaining training documentation.
 d. Ensuring that employees are provided with appropriate personal protective clothing and equipment for safe job performance.
 e. Notifying faculty and staff of TAMU-CC health and safety policies.
 f. Ensuring that significant safety issues identified in Laboratory Safety Evaluation Reports have been corrected.

Faculty/Principal Investigators (PIs)
Faculty and PIs are responsible for the following:
 a. Performing their jobs in the safest prescribed manner.
 b. Eliminating and/or reporting workplace hazards.
 c. Following injury reporting procedures.
 d. Complying with and implementing all applicable safety and health policies and protocols in their laboratories.
e. Developing written standard operating procedures, including safety procedures, applicable to their research and workers.

f. Implementing laboratory practices and providing/using engineering controls that reduce the potential for exposure to hazards.

g. Informing all laboratory staff and students of the potential hazards associated with laboratory operations, including the hazardous properties associated with chemicals in the laboratory (e.g., toxic, flammable, peroxidizable, explosive).

h. Informing all laboratory personnel of the proper procedures for dealing with accidents and spills.

i. Supervising laboratory personnel and/or students to ensure that safe practices and engineering controls are utilized.

j. Instructing laboratory personnel on the location and use of all safety equipment in the facility.

k. Designating at least one person to serve as a safety contact in the absence of the faculty member or PI.

l. Posting telephone numbers for all emergency response and safety contacts in a noticeable area in the laboratory and on the door to the laboratory. Ensure the posting is updated during sabbaticals or other absences or when there is a change in staff.

m. Correcting issues identified by Laboratory Inspection Form within 45 days.

n. Ensuring that pertinent Safety Data Sheets (SDS) are available.

Employees and Students

Employees and Students are responsible for:

a. Following all safety and health procedures specified in the Laboratory Safety Manual and by their laboratory supervisor.

b. Completing required health and safety training sessions.

c. Reporting accidents, unhealthy and unsafe conditions, near misses, and minor injuries to their supervisor,

d. Notifying their personal physician and/or the Employee Development and Compliance Services Office if any personal health conditions could lead to serious health situations in the laboratory. For example, someone with a compromised immune system or pregnancy, etc. may need to take extra precautions when working with chemical and biological agents.

NOTE: Accidents resulting in injury to an employee must be reported on the Employers First Report of Injury or Illness Form-1. Student injuries must be reported on the Incident/Injury Report Form for Non-TAMU-CC employees.
2.0 MITIGATING HAZARDS IN THE LABORATORY
The type of work performed in laboratories is wide-ranging. Hazards found in laboratories can vary depending on the nature of the work performed. Laboratory safety may include one or more areas of safety: chemical safety, fire safety, electrical safety, radiation safety, physical/equipment safety, laser safety and biological safety. In this chapter the variety of hazards that may be found in a laboratory and methods for mitigating the risks are discussed.

2.1 GENERAL LABORATORY SAFETY PRACTICES

SAFE PRACTICES

- Refer to the Quick Reference Guide to Campus Emergencies on how to respond to emergencies in your laboratory.
- Know the hazards associated with the materials (chemical, electrical, biological, etc.) and equipment in your laboratory. Refer to the appropriate safety information, such as Safety Data Sheets (SDSs), Standard Operating Procedures (SOPs), and equipment operating instructions, and follow the recommended safe practices. Consider the hazards of procedures to be performed and what training, knowledge, safety equipment, etc. are required to do the procedure safely.
- Use appropriate safety equipment, such as fume hoods and biological safety cabinets, to minimize exposure to hazardous materials. Verify that safety equipment is working properly prior to use.
- Follow proper operating procedures when using a chemical fume hood. Keep the hood sash at a comfortable working height (less than 18”), and close the sash completely when the hood is unattended.
- Wear appropriate personal protective equipment (PPE) and clothing. Remove PPE and wash hands before leaving the laboratory.
- Avoid working alone in a laboratory, especially when conducting hazardous procedures or handling hazardous materials.
- Keep doors closed and the laboratory secured when it is unattended. Limit unauthorized entry into laboratories, especially when hazardous procedures are being conducted.
- Do not eat, drink, use tobacco products, chew gum, apply cosmetics, or handle contact lenses in the laboratory.
- Do not store food and drinks in laboratories or in laboratory refrigerators or freezers. Do not prepare food in the laboratory or wash utensils used for food and drink in laboratory sinks. Refrigerators and
freezers used for the storage of food and beverages should be kept in a separate room (break area) with a door separating the laboratory from the break area. Label these units “Food Use Only.”

- Laboratory equipment that could be used for the preparation of food or beverages (such as microwave ovens, hot plates, and ice machines) should be dedicated exclusively for laboratory use. Clearly label such equipment to indicate “Lab Use Only,” “No Food or Drink,” and/or “Not for Human Consumption.”
- Do not pipet chemicals or biological materials by mouth. Use mechanical pipettes or pipetting devices instead.
- Do not leave reactions or other potentially hazardous procedures unattended. Protect operations from utility failures and other potential problems that could lead to overheating or other hazardous events.
- Clean equipment contaminated with chemical, biological or radiological materials immediately upon completion of the task. Have a spill kit on hand and clean up minor spills immediately. Call Environmental, Health & Safety for radiological spills, major chemical spills, or major biological spills.
- Avoid using dry ice in enclosed areas. Dry ice can produce elevated carbon dioxide levels.
- Avoid contaminating equipment with mercury. Replace mercury thermometers with a non-hazardous type. Contact E,H&S immediately if a mercury spill occurs.
- Children under the age of 15 years are not permitted in laboratories or other hazardous areas. The age limit may be higher for certain specific hazards, such as the presence of radiological materials (see University Rule 24.01.04.M6).
- Keep work areas neat, clean, and free of clutter.
- Keep hallways, corridors, and exit ways clear of equipment or clutter.

IMPORTANT: Never underestimate the hazards associated with a laboratory. If you are unsure about what you are doing, get assistance. Do not use unfamiliar chemicals, equipment, or procedures without proper training and supervision.

SECURITY

Laboratory security is vital to ensuring safety on campus. Not only should you protect your work area from theft and mischievous activities, but you should also keep unauthorized or unsuspecting persons from potentially becoming exposed to hazardous conditions. Follow these steps to secure your laboratory:

- Close and lock laboratory doors when the laboratory is unoccupied.
- Secure stocks of organisms and hazardous chemicals,
especially when the laboratory is unoccupied. Lock refrigerators, freezers, and chemical storage cabinets that are located in areas open to public access.

- Keep an accurate record of chemicals, stocks, cultures, etc. and any items or equipment that support project activities.
- Notify the University Police Department (UPD) if materials are damaged or missing from laboratories or if unauthorized entry into a laboratory has been attempted.
- Inspect all packages arriving into the laboratory. Do not accept suspicious or unexpected packages.
- At the end of the day, ensure that all hazardous materials, whether chemical or biological have been properly stored and secured.
- Greet all visitors to the laboratory immediately, and determine their reason for entering your laboratory. Ask them to exit the room if they are not authorized to be there.
- Implement other security requirements as necessary for your work.
- Post current Emergency Contact Information (ECI) cards on all laboratory doors.
- Never prop open a laboratory door, except for a brief time to move items in and out.

WORKING IN THE LABORATORY

Every person who works in a laboratory, whether an employee or a student, is responsible for being aware of the hazards in that laboratory and for working in a safe manner. This includes:

- Knowing where emergency contact information is posted;
- Knowing and following emergency response procedures (including spill response, first aid response, evacuation routes, etc.);
- Ensuring they have received proper safety training before working with hazardous materials or equipment;
- Wearing appropriate Personal Protective Equipment; and
- Reporting unsafe conditions to their supervisor and/or to EHS.

Laboratory personnel should avoid working alone. If procedures require a person to work at a time when others may not be present (such as after hours or on weekends) the person shall:

- Obtain written permission to work alone in the laboratory (e.g., e-mail or letter from the Principal Investigator or Laboratory Supervisor);
- Ensure that a means to contact emergency response personnel is available when working alone in the laboratory; and
- Inform UPD so they are aware of building occupants in the case of an emergency and so they can perform building sweeps at regular intervals

NOTE: According to the National Safety Council, the term *alone* means that a person is beyond the visual or auditory range of any other individual for more than a few minutes at a time.

HOUSEKEEPING

Maintaining a neat and clean laboratory work area is instrumental to minimizing accidents in the laboratory. The following steps should be taken:

- Keep aisles clear of clutter to eliminate tripping hazards and to maintain a clear exit path in the event of an emergency, such as a fire in the laboratory or building.
- Dispose of empty boxes and other unneeded items that take up space.
- Keep bench tops clear of clutter. Properly store chemicals and sharps when they are not in use or at the end of the work day. A clear work space will reduce the likelihood of accidental contact with hazardous items.
- Clean up spills, even minor ones, promptly.
- Replace bench liners regularly or when they become dirty or contaminated.

SIGNAGE AND CONTACT INFORMATION

Contact information should be posted outside the entrance to every laboratory. This information should at minimum include the principal investigator (PI) or other person primarily responsible for the laboratory, the PI’s office and laboratory phone numbers, and after-hours emergency contact information.

Depending upon the hazards located in the laboratory, such as biological or radiological, additional signage may be required. This information is critical for emergency personnel responding to an incident in the laboratory. Consult the appropriate section or authority for more information on signage requirements.

2.2 PHYSICAL SAFETY

There are a variety of physical hazards that can be found in a laboratory environment. Many of these hazards are similar to those found in every home, and if common sense
is applied, risks are fairly easy to minimize. This section will focus on common physical hazards and how to reduce the risk associated with them.

AEROSOL PRODUCTION

Liquid or solid particles suspended in air are referred to as “aerosols.” Aerosols containing infectious agents and hazardous materials can pose a serious health risk. If inhaled, small aerosol particles can readily penetrate and remain deep in the respiratory tract. Also, aerosol particles can easily contaminate equipment, ventilation systems, and human skin. Because they may remain suspended in the air for long periods of time after they are initially discharged, steps should be taken to minimize the production of and exposure to aerosols.

The following may produce aerosols:

- Centrifuge
- Blender
- Shaker
- Magnetic stirrer
- Sonicator
- Pipette
- Vortex mixer
- Syringe and needle
- Vacuum-sealed ampoule
- Grinder, mortar, and pestle
- Test tubes and culture tubes
- Heated inoculating loop
- Separatory funnel
- Animals
- Hot plate (if chemicals are spilled onto the hot surface)
- Chemical or biological spills

Follow these guidelines to eliminate or reduce the hazards associated with aerosols:

- Conduct procedures that may produce aerosols in a certified biological safety cabinet or a chemical fume hood.
- Keep tubes stoppered when vortexing or centrifuging.
- Allow aerosols to settle for five to ten minutes before opening a centrifuge, blender, or tube.
- Place a cloth soaked with disinfectant over the work surface to kill any biohazardous agents.
- Slowly reconstitute or dilute the contents of an ampoule.
When combining liquids, discharge the secondary material down the side of the container or as close to the surface of the primary liquid as possible to avoid splattering the material.
- Avoid splattering by allowing inoculating loops or needles to cool before touching biological specimens.
- Use a mechanical pipetting device.

ELECTRICAL SAFETY

Electrical safety is an important component of laboratory safety. When using electrical equipment in a laboratory, the guidelines below should be followed:

- Check electrical cords and switches for damage prior to using equipment or appliances. Damaged cords (cords with frayed or exposed wires or with damaged or missing plug prongs) should be repaired promptly or the equipment should be locked/tagged out until the cord can be repaired.
- Use extension cords only when necessary and only on a temporary basis (less than eight hours). Do not use extension cords in place of permanent wiring. Contact Physical Plant to request new outlets if your work requires equipment in an area without an outlet.
- Use extension cords that are the correct size or rating for the equipment in use. The diameter of the extension cord should be the same or greater than the cord of the equipment in use.
- Do not run electrical cords above ceiling tiles, through walls or across thresholds.
- Keep electrical cords away from areas where they may be pinched and areas where they may pose a tripping or fire hazard (e.g., doorways, walkways, under carpet, etc.)
- Avoid plugging more than one appliance in each outlet. If multiple appliances are necessary, use a single approved power strip with surge protection and a circuit breaker. Do not overload the circuit breaker.
- Avoid “daisy-chaining” or “bird-nesting.” Connecting power strips and/or extension cords in a series or cluster is against fire and electrical codes.
- Use ground fault circuit interrupters when using electrical equipment near water sources.
- Keep access to electrical panels clear of obstructions.

MECHANICAL/EQUIPMENT SAFETY

There are four fundamental elements of equipment safety:
1) **Use the correct equipment for the job.**
 Equipment should be used for its intended purpose only. **Never** modify or adapt equipment without guidance from the equipment manufacturer or EHS. Do **NOT** circumvent, remove, or override equipment safety devices! Doing so can result in injury or even death. (Example: Defeating a fume hood sash lock.)

2) **Know how to properly operate equipment.**
 This may require documented, specific training. Also the user must be familiar with applicable safeguards and maintenance requirements.

3) **Inspect equipment for damage and for required safety features prior to use.**
 Ensure that equipment meets the following requirements:
 - Controls and safeguards are adequate and functional (e.g., interlocks that shut-off equipment automatically and guards that protect moving parts and belts).
 - The location is safe (and well-ventilated, if necessary).
 - Equipment works properly.

 IMPORTANT: Disconnect any equipment that is unsafe or does not work properly, and remove it from service (lock out/tag out). Notify other users of the problem.

4) **Use equipment properly.**
 Do **NOT** use the equipment in ways it was not designed or intended to be used.

 Refer to other sections in this chapter and manual for specific information on operating laboratory equipment, such as fume hoods, heating devices, vacuums, etc.

NOISE/AUDITORY SAFETY

Many laboratory environments are noisy due to the number and type of equipment used in them. While some equipment is inherently noisy, others only become noisy when there is a problem, such as a loose belt. In noisy environments, precautions should be taken to protect personnel from hearing loss. Ear plugs or other hearing protection may be necessary. If equipment is operating at a louder than normal noise level, maintenance may need to be scheduled. EHS can recommend hearing protection devices based on noise levels in the workspace and on individual needs.

EHS offers auditory screenings to determine current hearing levels of employees. Regular screenings can help determine if there may be a
pattern of hearing loss over time. EHS also has instruments to measure noise levels in the work area. These measurements may be used to determine if noise attenuating materials or hearing protection needs to be implemented.

GLASS & METAL SHARPS

Accidents involving glassware are a leading cause of laboratory injuries. Careful handling and disposal of metal and glass sharps can minimize the risk of cuts and puncture wounds, not only for laboratory personnel, but for other university employees as well.

Laboratory Glassware

Follow these practices for using laboratory glassware safely:

- Prevent damage to glassware during handling and storage.
- Inspect glassware before and after each use. Discard or repair any cracked, broken, or damaged glassware.
- Thoroughly clean and decontaminate glassware after each use.
- When inserting glass tubing into rubber stoppers, cores, or tubing follow these guidelines:
 - Use adequate hand protection, such as a glass tubing insertion tool.
 - Lubricate the tubing.
 - Hold hands close together to minimize movement if the glass breaks.
 - When possible, use plastic or metal connectors instead of glass connectors.
- Heat and cool large glass containers slowly to reduce the risk of thermal shock.
- Use Pyrex or heat-treated glass for heating operations.
- Never use laboratory glassware to serve food or drinks.
- Do not wash laboratory glassware in the same sink in which food and beverage utensils are washed.
- Use thick-walled and/or round-bottomed glassware for vacuum operation. Flat-bottomed glassware is not as strong as round-bottomed glassware.
- Use a mesh glass sleeve around glassware or tape glassware that is under pressure. This will contain the glass in one place should it break.
- Use a standard laboratory detergent to clean glassware.
IMPORTANT: Do not use chromic acid to clean glassware. Use a standard laboratory detergent. Chromic acid is extremely corrosive and expensive to dispose. Chromic acid must not be disposed in the sanitary sewer system.

When handling glassware, follow these safety guidelines:

a. When handling cool flasks, grasp the neck with one hand and support the bottom with the other hand.

b. Lift cool beakers by grasping the sides just below the rim. For large beakers, use two hands: one on the side and one supporting the bottom.

c. Never carry bottles by their necks.

d. Use a cart or specially designed secondary container to transport large and/or heavy bottles.

e. Do not pick up broken glass with bare or unprotected hands. Use a brush and dust pan to clean up broken glass. Remove broken glass in sinks by using tongs for large pieces and cotton held by tongs for small pieces and slivers.

Metal Sharps

Metal sharps should be carefully stored and handled properly. Follow these guidelines:

a. Do not uncap a needle by placing the cap in your mouth.

b. Never re-cap a used syringe needle by hand or mouth, and never manipulate (bend, break, shear, remove from syringe, etc.) a needle. Immediately place used/contaminated sharps in a sharps disposal container.

c. Do not leave sharps, including razor and scalpel blades, lying unprotected on bench tops. Place in a secondary container when not in use or when being transported.

d. If a needle/syringe must be reused,
 i. Use self-sheathing syringes or other safety devices for re-capping sharps whenever possible. The one-handed scoop method may be used as a last resort.
 ii. Place the uncapped syringe/needle in cork or foam, or place it in a tray or other type of secondary container when not in use and when being transported.

TEMPERATURE

Equipment that produces extreme temperatures are often used in laboratories. Whether the equipment is a -80 freezer, a walk-in cooler or freezer, cryogenic liquids, a hotplate, an oven, or an autoclave, caution should
be taken whenever extreme temperatures may be encountered. Not using appropriate protective equipment, such as temperature resistant gloves, when using this equipment can lead to painful injuries.

Before using temperature generating equipment, become familiar with proper procedures and handling techniques. Pay special attention to the personal protective equipment required for that equipment. Posting signs that warn of the hazard may help reduce the likelihood of someone accidentally touching an extremely hot or cold surface – such as a hot plate – especially if it is not obvious that the equipment is on.

PRESSURIZED SYSTEMS

Pressurized systems have the potential to cause extensive damage and injury if extreme caution is not taken. Pressurized systems include compressed gases, liquid cryogenic cylinders, and vacuum systems, among others. When working with pressurized systems, remember:

a. Do not conduct a reaction in, or apply heat to, a closed system apparatus unless the equipment is designed and tested to withstand pressure. See American Society of Mechanical Engineers (ASME) Code, Section VIII for more information about maximum allowable working pressure (MAWP).
b. Pressurized systems should have an appropriate relief valve set at the MAWP.
c. Pressurized systems must be fully shielded and should not be utilized in an occupied space until safe operation has been assured. Until safe operation is assured, remote operation is mandatory.

Safety points to remember:

a. Limit exposure to pressurized systems to minimize risk.
b. Identify and assess all hazards and consequences prior to beginning operations.
c. Use remote manipulations whenever possible.
d. Minimize pressure, volume, and temperature.
e. Design pressurized systems conservatively relative to the operating temperature and pressure.
f. Use material with a predictably safe failure mode.
g. Ensure that the components of the pressurized system will maintain structural integrity at the maximum allowable working pressure.

IMPORTANT: Do not use glass containers for pressurization, unless the glass item is designed to be pressurized and is rated for pressurization by the manufacturer.

h. Only use equipment designed for use under pressure. Avoid material that may become brittle at extreme temperatures.
i. Operate within the original design parameters.
j. Ensure safety mechanisms (e.g., pressure relief valves, fail-safe devices) are in place.
k. Use quality hardware.
l. Use protective shield or enclosures.
m. Use tie-downs to secure tubing and other equipment.
n. Do not leave a pressurized system unattended.

2.3 EQUIPMENT SAFETY

COMPRESSED GASES

Compressed gases in the laboratory present chemical and physical hazards. The gases may be toxic, corrosive, flammable, or explosive (reactive). If compressed gases are accidentally released, they may cause the following:

- Depleted oxygen atmosphere, potentially resulting in asphyxiation (includes inert gases)
- Fire or explosion
- Adverse health effects from chemical exposure
- Physical damage to facilities or injuries to personnel as a result of the sudden release of potential energy

Cylinders that fall or are knocked over or dropped can be very dangerous and can cause serious injuries. If a valve is knocked off a compressed gas cylinder, the cylinder can become a high speed, potentially lethal projectile.

IMPORTANT: Cylinders can travel through walls much like a torpedo travels through water. They can cause structural damage, severe injury, and even death. Because disposal of compressed gas cylinders is difficult and expensive, be sure to arrange a return agreement with suppliers prior to purchase.

Guidelines to ensure safe storage of gas cylinders:

a. Check the label. The cylinder must be clearly marked with its contents and with any hazard warnings. Do not rely on color to identify container contents.
b. Secure all cylinders to a wall or bench using brackets or clamping devices designed for such. Cylinders may also be stored in gas cylinder racks or floor stands. (A cylinder dolly should not be used for storage.)
 i. Fasten cylinders individually (not ganged or grouped).
ii. Fasten cylinders with a sturdy chain or strap; bungee cords and rope are not acceptable as a means of securing compressed gas cylinders.

C. Store cylinders in a well ventilated area that is cool and dry. Ignition sources such as heat, sparks, flames, and electrical circuits should be kept away from gas cylinders.

d. When not in use (i.e., the regulator has been removed), gas cylinders should be stored with a safety cap attached.

e. Minimize the number of hazardous gas cylinders in a laboratory. Do not exceed the following:
 i. Three 10" x 50" flammable gas and/or oxygen cylinders, and
 ii. Two 9" x 30" liquefied flammable gas cylinders, and
 iii. Three 4" x 15" cylinders of severely toxic gases (e.g., arsine, chlorine, diborane, fluorine, hydrogen cyanide, methyl bromide, nitric oxide, phosgene).

f. Store cylinders of flammables and oxidizing agents at least 20 feet apart, or separate these items with a fire wall.

g. Do not store cylinders with corrosive materials.

h. Do not store cylinders on the tops of shelves or cabinets.

i. Keep flammable gases away from doorways or exit routes.

j. Separate full cylinders from empty cylinders. Label empty cylinders “Empty.”

k. Do not store gas cylinders in hallways or public areas. Cylinders should be stored in a secure area.

l. Close valves, and release pressure on the regulators when cylinders are not in use.

m. Dispose of old lecture bottles. Return lecture bottles to the supplier or dispose of them as hazardous waste.

Handling and working with compressed gas cylinders:

a. Never move a gas cylinder unless the cylinder safety cap is in place.

b. When working with particularly hazardous gases use special procedures and work in approved gas storage cabinets.

c. The gas cylinder should be chained or otherwise secured to an approved cylinder cart or dolly when being transported. Do not move a cylinder by rolling it on its base.

d. Only use regulators approved for the type of gas in the cylinder. Do not use adapters to interchange regulators. Also, never try to repair or modify a gas regulator or its pressure gauges.

e. Do not use Teflon tape when attaching the regulator.

f. When opening a cylinder valve, follow these guidelines:
 i. Direct the cylinder opening away from people.
 ii. Open the valve slowly. Never open a cylinder valve without a regulator.
g. For a leaking cylinder:
 i. Close the valve if it is open and contact the supplier to pick it up.
 ii. If the valve is already closed, leave the laboratory and shut the door behind you. Contact E,H&S immediately.
h. Do not use oil or other lubricant on valves and fittings.
i. Do not use oxygen as a substitute for compressed air.
j. Do not lift cylinders by the safety cap.
k. Do not tamper with the safety devices on a cylinder. Have the manufacturer or supplier handle cylinder repairs.
l. Do not change a cylinder's label or color. Do not refill cylinders yourself.
m. Do not heat cylinders to raise internal pressure.
n. Do not use compressed gas to clean your skin or clothing.
o. Do not completely empty cylinders. Maintain at least 30 psi pressure.
p. Do not use copper (>65% copper) connectors or tubing with acetylene. Acetylene can form explosive compounds with silver, copper, and mercury.
q. Always wear impact resistant glasses or goggles when working with compressed gases.
r. Do not subject compressed gas cylinders to cryogenic temperatures.

CRYOGENIC LIQUIDS

Cryogenic fluids are extremely cold liquefied gases, such as liquid nitrogen or liquid oxygen, and are used to obtain extremely cold temperatures. Most cryogenic liquids are odorless, colorless, and tasteless. When cryogenic liquids are exposed to the atmosphere, however, they create a highly visible and dense fog.

Cryogens pose numerous hazards. A person who is exposed to cryogens can have significant health consequences. All cryogens, with the exception of oxygen, can displace breathable air and can cause asphyxiation. Cryogens can also cause frostbite on exposed skin and eye tissue.

IMPORTANT: Be aware of the tremendous expansion and threat of asphyxiation when a cryogenic liquid vaporizes at room temperature.

There is also an increased risk of fire in areas where liquid cryogens are stored and used. For example, cryogenic vapors from liquid oxygen, liquid hydrogen or other flammable cryogens may cause a fire or explosion if ignited. Materials that are normally noncombustible (e.g., carbon steel) may ignite if coated with an oxygen-rich condensate. Liquefied inert gases,
such as liquid nitrogen or liquid helium, are capable of condensing atmospheric oxygen and causing oxygen entrapment or enrichment in unsuspected areas. Extremely cold metal surfaces are also capable of entrapping atmospheric oxygen.

Because the low temperatures of cryogenic liquids may affect physical properties of materials such as stainless steel or aluminum, take care to select equipment materials accordingly.

Follow these guidelines when working with cryogenic liquids:

a. Before working with cryogenic liquids, acquire a thorough knowledge of cryogenic procedures, equipment operation, safety devices, and material properties. Cryogenic training should be documented.
b. Reject delivery of unsafe cylinders.
c. Keep equipment and systems extremely clean.
d. Avoid skin and eye contact with cryogenic liquids. Wear appropriate personal protective equipment, such as a laboratory coat, temperature resistant gloves, and chemical splash goggles. Also, do not inhale cryogenic vapors.
e. Pre-cool receiving vessels to avoid thermal shock and splashing.
f. Use tongs to place and remove items in cryogenic liquid.
g. When discharging cryogenic liquids, purge the line slowly. Only use transfer lines specifically designed for cryogenic liquids.
h. Rubber and plastic may become very brittle in extreme cold. Handle these items carefully when removing them from cryogenic liquid.
i. Store cryogenic liquids in double-walled, insulated containers (e.g., Dewar flasks) which are designed for this use.
j. Tape exposed glass on cryogenic containers. In the event the container breaks or implodes, the tape will reduce fragmentation and violent dispersal of glass shards.
k. Do not store cylinders of cryogenic liquids in hallways or other public areas.

VACUUM SYSTEMS

All vacuum equipment is subject to possible implosion. Take precautions to minimize damage and injuries that can result from an implosion. When using a vacuum system, follow these guidelines and requirements to ensure system safety:

a. Ensure that pumps have belt guards in place during operation.
b. Ensure that service cords and switches are free from defects.
c. Always use a trap on vacuum lines to prevent liquids from being drawn into the pump, vacuum line, or water drain. An in-line High Efficiency Particulate Air (HEPA) filter is required whenever biohazardous or recombinant DNA materials are used in a vacuum system.

d. Replace and properly dispose of vacuum pump oil that is contaminated with condensate. Used pump oil must be disposed of as hazardous waste.

e. Place a pan under pumps to catch oil drips.

f. Do not operate pumps near containers of flammable chemicals.

g. Do not place pumps in an enclosed, unventilated cabinet. Dangerous carbon monoxide gas and heat can build up in enclosed spaces.

h. Conduct all vacuum operations behind a table shield or in a fume hood. Also, glassware may be wrapped with tape to minimize the effects of an implosion.

i. Use only heavy-walled round-bottomed glassware for vacuum operations. The only exception to this rule is glassware specifically designed for vacuum operations, such as an Erlenmeyer filtration flask.

j. Wrap exposed glass with tape to prevent flying glass if an implosion occurs.

k. Carefully inspect vacuum glassware before and after each use. Discard any glass that is chipped, scratched, broken, or otherwise stressed.

l. Wear appropriate PPE, including safety glasses or goggles and a face shield when approaching a system under pressure.

m. Glass desiccators often have a slight vacuum due to contents cooling. When possible, use molded plastic desiccators with high tensile strength. For glass desiccators, use a perforated metal desiccator guard.

CAUTION: Do not underestimate the pressure differential across the walls of glassware that can be created by a water aspirator.

Cold Trap

A cold trap is a condensing device used to prevent moisture contamination in a vacuum line. Follow these guidelines for using a cold trap:

a. Locate the cold trap between the system and vacuum pump.

b. Ensure that the cold trap is of sufficient size and cold enough to condense vapors present in the system.

c. Check frequently for blockages in the cold trap.
d. Use isopropanol/dry ice or ethanol/dry ice instead of acetone/dry ice to create a cold trap. Isopropanol and ethanol are cheaper, less toxic, and less prone to foam.
e. Do **not** use dry ice or a liquefied gas refrigerant bath as a closed system. These can create uncontrolled and dangerously high pressures.

Vacuum Systems and Biohazardous Materials

Refer to the Biological Safety Manual for more information on using vacuum systems with biohazardous materials.

CENTRIFUGES

A centrifuge is a common piece of laboratory equipment, and using a centrifuge properly is essential to preventing accidents which could result in serious injury or destruction of the equipment. The hazards associated with centrifuges can be related to the equipment itself, the materials used in the centrifuge, or improper use of the centrifuge. It is vital that the centrifuge operator has been thoroughly trained on how to safely use the centrifuge and on how to properly maintain it.

Guidelines for Centrifuge Use

a. Centrifuge operators must be trained in the proper use, handling, storage, and maintenance of the equipment.
b. Use a centrifuge only if it has a disconnect switch that deactivates the rotor when the lid is open. Replace older models that do not have this safety feature.
c. Always keep the lid closed and locked during operation and shut down. Do not open the lid until the rotor is completely stopped or attempt to brake the head rotation by hand;

IMPORTANT: Attempting to defeat safety mechanisms and/or to brake the rotor by hand could result in severe injury!

d. Use the centrifuge in a well ventilated area.
e. Low-speed and small portable centrifuges that do not have aerosol-tight chambers may allow aerosols to escape. Use a safety bucket to prevent aerosols from escaping or use the centrifuge in a biological safety cabinet or fume hood.

Safe Operating Techniques

The following safe operating techniques should be followed for proper centrifuge operation:
a. Inspect the inside of each tube cavity or bucket prior to using the centrifuge. The rotor and tubes should be clean and dry. Remove any glass or other debris from the rubber cushion.
b. Before loading the rotor, examine the tubes for signs of stress, and discard any tubes that are damaged.
c. Ensure that centrifuge tubes are not filled more than three-fourths full. Overfilling can result in leaks or spills. Also, do not fill tubes to the point where the rim, cap, or cotton plug becomes wet.
d. When balancing the rotors, match the tubes, buckets, adapters, and inserts against each other, and consider any added solution. Tubes, etc. should be spaced or distributed evenly around the rotor, and the density of the contents of the tubes should also be similar.
e. Do not use aluminum foil to cap a centrifuge tube. Foil may rupture or detach.
f. Ensure that the centrifuge has adequate shielding to guard against accidental ejection.
g. Stop the rotor and discontinue operation if you notice anything abnormal such as a noise or vibration.

High Speed Centrifuges

High-speed centrifuges pose additional hazards due to the higher stress and force applied to their rotors and tubes. It is necessary to understand the basic mechanics of the equipment and to know how to maintain it properly to ensure overall safety and reduce risk. In addition to the safety guidelines outlined above, follow these guidelines for high-speed centrifuges:

- Be sure the centrifuge rotor and tubes are clean and dry prior to use.
- The centrifuge should be cleaned periodically to help prevent corrosion or other damage. Routinely wash rotors with a mild dish soap to prolong rotor life. Rinse and let air dry.
- Clean any spills in the centrifuge immediately, especially if the materials are corrosive.
- Frequently inspect the rotor and other parts for corrosion, wear, or other damage; turn the spindle by hand. Rotors or parts exhibiting corrosion or other damage should be removed from use and evaluated by a service technician.
- Check the expiration date of both the rotor and centrifuge. Always follow the manufacturer’s retirement date for rotors and other centrifuge parts.
- Do not exceed manufacturer recommendations for safe operating speeds.
- Keep a record of rotor usage and follow the manufacturer’s recommendations on when to replace the rotor.
- For centrifuges that have been refrigerated, wipe away any excess moisture and allow the open unit to dry.
Filter the air exhausted from the vacuum lines.

ELECTROPHORESIS

Electrophoresis equipment may be a major source of electrical hazard in the laboratory. The presence of high voltage and conductive fluid in this apparatus presents a potentially lethal combination.

Many people are unaware of the hazards associated with this apparatus; even a standard electrophoresis operating at 100 volts can deliver a lethal shock at 25 milliamps. In addition, even a slight leak in the device tank can result in a serious shock.

Protect yourself from the hazards of electrophoresis and electrical shock by taking these precautions:

- Use physical barriers to prevent inadvertent contact with the apparatus.
- Use electrical interlocks.
- Frequently check the physical integrity of the electrophoresis equipment.
- Use warning signs to alert others of the potential electrical hazard.
- Use only insulated lead connectors.
- Turn the power off before connecting the electrical leads.
- Connect one lead at a time using one hand only.
- Ensure that your hands are dry when connecting the leads.
- Keep the apparatus away from water and water sources.
- Turn the power off before opening the lid or reaching into the chamber.
- Do not disable safety devices.
- Follow the equipment operating instructions.

HEATING SYSTEMS

Common hazards associated with laboratory heating devices include electrical hazards, fire hazards, and hot surfaces. Devices that supply heat for reactions or separations include the following:

- Open flame burners
- Hot plates
- Heating mantles
- Oil and air baths
- Hot air guns
- Ovens
- Furnaces
Ashing systems

Follow these guidelines when using heating devices:

a. Before using any electrical heating device:
 i. Ensure that heating units have an automatic shutoff to protect against overheating.
 ii. Ensure that heating devices and all connecting components are in good working condition.

b. Use caution when heating chemicals, as heated chemicals can cause more damage more quickly than would the same chemicals at a lower temperature.

Rule of Thumb: Generally, reaction rates double for each 10° C increase in temperature.

c. Use heating baths equipped with timers to ensure that they turn on and off at appropriate times.

d. Use a chemical fume hood when heating flammable or combustible solvents. Arrange the equipment so that escaping vapors do not contact heated or sparking surfaces.

e. Use non-asbestos thermal-heat resistant gloves to handle heated materials and equipment.

f. Perchloric acid digestions must be conducted in a perchloric fume hood.

g. Minimize the use of open flames. *Never* leave an open flame unattended.

Refrigerators/Freezers

Using a household refrigerator to store laboratory chemicals is extremely hazardous for several reasons. Many flammables solvents are still volatile at refrigerator temperatures. Refrigerator temperatures are typically higher than the flashpoint of most flammable liquids. In addition, the storage compartment of a household refrigerator contains numerous ignition sources including thermostats, light switches, heater strips, and light bulbs. Furthermore, the compressor and electrical circuits, located at the bottom of the unit where chemical vapors are likely to accumulate, are not sealed.

Laboratory-safe and explosion-proof refrigerators typically provide adequate protection for chemical storage in the laboratory. Laboratory-safe refrigerators, for example, are specifically designed for use with flammables since the sparking components are located on the exterior of the refrigerator. Explosion-proof refrigerators are required in areas that may contain high levels of flammable vapors (e.g., chemical storage rooms with large quantities of flammables).
Follow these rules for using refrigerators and freezers in the laboratory:

a. Never store flammable chemicals in a household refrigerator.
b. Do not store food or drink in a laboratory refrigerator/freezer.
c. Ensure that all refrigerators are clearly labeled to indicate suitable usage.
 i. Laboratory-safe and explosion-proof refrigerators should be identified by a manufacturer label.
 ii. "Not Safe for Flammable Storage" labels are available from the Environmental, Health & Safety Department and must be applied to any household style refrigerator or freezer used in a laboratory.
 iii. Refrigerators used to hold food should be labeled "For Food Only" and should be located outside of the laboratory.

2.4 Biological and Animal Safety

Many laboratories on campus use biological materials, including biological pathogens, toxins and allergens derived from biological agents. DNA materials. Some laboratories work with animals in their research or in clinical settings. In these laboratories, Biological and/or Animal Safety is integral to overall laboratory safety.

For research involving biological materials or animals, oversight by the Research & Graduate Studies may be required. Three committees within the ORC oversee and grant approval for conducting such research.

- The Institutional Review Board (IRB) manages research involving human subjects.
- The Institutional Animal Care and Use Committee (IACUC) oversees any research involving the use of animals.
- The Institutional Biosafety Committee (IBC) manages research involving recombinant DNA materials, biological pathogens, and biological toxins (including those on the Select Agent List).

Specific information on Biological Safety may be obtained from the Institutional Biosafety Committee.

2.5 Radiological and Laser Safety

Light Amplification by the Stimulated Emission of Radiation (Laser) is:

- Monochromatic- one color/wavelength
Directional - light emitted in a narrow beam in a specific direction
Coherent - all light waves are in phase.

These three properties of laser light are what make it more hazardous than ordinary light. Laser light can focus a lot of energy within a small area. Lasers operate in the ultraviolet, visible, near infrared, and far infrared regions.

Laser Hazard Classifications

- Class 1 “safe” if not disassembled. Cd Rom players/drives
- Class 2 eye hazard if you stare into the beam. A supermarket point-of-sale scanner
- Class 3a (3R) eye hazard if collected or focused into the eyes. If operated with care Class 3a lasers pose a low risk of injury. Most laser pointers are 3R lasers.
 - Class 3b eye hazard if direct or reflected beam is viewed. Most 3B lasers do not produce diffuse reflection hazards.
- Class 4 eye hazard if direct, reflected or diffusely reflected beam is viewed; possible skin and fire hazard.

Types of Laser Hazards

a. Eye: Acute exposure of the eye to lasers of certain wavelengths and power can cause corneal or retinal burns (or both).
 i. Chronic exposure to excessive levels may cause corneal or lenticular opacities (cataracts) or retinal injury.
 ii. Damage to the retina resulting in scotoma (blind spot in the fovea).
 iii. Photoacoustic retinal damage may be associated with an audible “pop” at the time of exposure. Damage may not be apparent to the operator until considerable thermal damage has occurred.

b. Skin: Acute exposure to high levels of optical radiation may cause skin burns; while carcinogenesis may occur for ultraviolet wavelengths (290-320 nm).

c. Chemical: Some lasers require hazardous or toxic substances to operate (i.e., chemical dye, Excimer lasers).

d. Electrical: Most lasers utilize high voltages that can be lethal.

e. Fire: The solvents used in dye lasers are flammable. High voltage pulse or flash lamps may cause ignition. Flammable materials may be ignited by direct beams or specular reflections from high power continuous wave (CW) infrared lasers.

Control Measures

a. Administrative controls are policies that limit exposure to laser hazards.
i. Authorized personnel operate the laser
ii. Standard Operating Procedures
iii. Training

b. Engineering controls built into the equipment or facility that protect personnel automatically without the need of protective action by the worker
i. Interlocks
ii. Enclosed beams

c. Personnel Protective Equipment (PPE)
i. Eye Protection is required for Class 3B and Class 4 lasers.
 o Laser protective eyewear is to be available and worn by all personnel within the Nominal Hazard Zone (NHZ) of Class 3B and Class 4 lasers where the exposures above the Maximum Permissible Exposure (MPE) can occur
 o The attenuation factor (optical density) of the laser protective eyewear at a specific wavelength shall be specified.
 o All laser protective eyewear shall be clearly labeled with the optical density and the wavelength for which protection is afforded. This is especially important in areas where multiple lasers are housed.
 o Inspect all laser protective eyewear for damage prior to use.

ii. Skin protection can best be achieved through engineering controls.
 o If the potential exits for damaging skin exposure, particularly for ultraviolet lasers (0.200-0.400 m), then skin covers and or sun-screen creams are recommended.
 o For the hands, gloves will provide some protection against laser radiation. Tightly woven fabrics and opaque gloves provide the best protection.
 o A laboratory jacket or coat can provide protection for the arms. For Class 4 lasers, flame-resistant materials may be best.
3.0 CHEMICAL SAFETY

3.1 OVERVIEW
Almost everyone works with or around chemicals and chemical products every day. Chemical safety is inherently linked to other safety issues including engineering controls, laboratory procedures, personal protective equipment, electrical safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them hazardous: they can create physical hazards (fire, explosion) and/or health hazards (toxicity, chemical burns, and dangerous fumes). However, there are many ways to work with chemicals which can both reduce the probability of an accident to a negligible level and minimize the consequences should an accident occur.

Risk minimization depends on safe practices, appropriate engineering controls for chemical containment, the proper use of personal protective equipment, the use of the least quantity of material necessary, and substitution of less hazardous chemicals. Before beginning an operation, one should ask "What would happen if . . .?" The answer to this question requires an understanding of the hazards associated with the chemicals, equipment and procedures involved. The hazardous properties of the material and intended use will dictate the precautions to be taken.

It is important to distinguish the difference between hazard and risk. The two terms are sometimes used as synonyms. In fact, the term “hazard” is a much more complex concept because it includes conditions of use. The hazard presented by a chemical has two components: (1) its inherent capacity to do harm by virtue of its toxicity, flammability, explosiveness, corrosiveness, etc.; and (2) the ease with which the chemical can come into contact with a person or other object of concern. The two components together determine “risk” – the likelihood or probability that a harmful consequence will occur. Thus, an extremely toxic chemical such as strychnine cannot cause poisoning if it is in a sealed container and does not contact the handler. In contrast, a chemical that is not highly toxic can be lethal if a large amount is ingested.

It should be noted that not all chemicals are considered hazardous. Examples of nonhazardous chemicals include pH neutral buffers, sugars, starches, agar, and naturally occurring amino acids. This chapter will focus on hazardous chemicals.

3.2 HAZARD COMMUNICATION PROGRAM
TAMU-CC has a written program (the TAMU-CC Hazard Communication Program) for hazardous chemicals that complies with the Texas Hazard Communication Act (THCA). This program is available from Environmental, Health & Safety. It requires the following:
a. Employee training (including recognition of signs of exposure)
 i. General – Assigned to new or newly relocated employees by their administrative location (adloc) in TAMU-CC TrainTraq before they work with or handle hazardous chemicals.
 ii. Work Area Specific – Provided by individual's supervisor (PI, laboratory manager, etc.)

b. Availability of SDSs

c. Work Area Chemical Inventory (WACI)
 i. Recordkeeping requirements
 ii. Emergency response requirements
 Exemptions - Research laboratories are exempt from the WACI requirements under THCA however, TAMU-CC requires that all laboratories submit a chemical inventory.

d. Labeling requirements
 i. Primary container labels – Must have the original manufacturer’s label, which includes the chemical name, hazards, and manufacturer’s information.
 ii. Secondary container labels – Must identify the chemical as it is on the Safety Data Sheet (SDS) and the hazards.
 Exemptions – Research laboratories are exempt from the secondary container labeling requirements under THCA. However, TAMUCC requires that all containers be labeled so as to somehow identify the contents.

3.3 HAZARD IDENTIFICATION

An integral part of hazard communication is hazard identification. Everyone who works with hazardous chemicals should know how to read and interpret hazard information. Signs, labels, placards, and symbols alert employees to the known hazards in a particular location.

The National Fire Protection Association (NFPA) 704 Diamond in the illustration below is one method of identifying chemical hazards. NFPA uses a scale of 0 – 4 to rate each hazard, with 0 indicating “no hazard” and 4 indicating the most extreme hazard. The following is a detailed explanation of the NFPA hazard classification codes:
a. Health (Blue):

- 4 - Can cause death or major injury despite medical treatment
- 3 - Can cause serious injury despite medical treatment
- 2 - Can cause injury. Requires prompt medical treatment
- 1 - Can cause irritation if not treated
- 0 - No hazard

b. Flammability (Red):

- 4 - Very flammable gases or liquids
- 3 - Can ignite at normal temperatures
- 2 - Ignites with moderate heat
- 1 - Ignites with considerable preheating
- 0 - Will not burn

c. Reactivity (Yellow):

- 4 - Readily detonates or explodes
- 3 - May detonate or explode with strong initiating force or heat under confinement
- 2 - Normally unstable, but will not detonate
- 1 - Normally stable. Unstable at high temperature and pressure.
- 0 - Normally stable and not reactive with water.

d. Specific Hazard (White):

- Oxidizer - OX
- Acid - ACID
- Alkali - ALK
- Corrosive - COR
- Use No Water - W
- Radioactive – (see image at right)

Many chemicals fall under more than one hazard class. Extra care should be taken when handling or storing chemicals with multiple hazards.

Other labeling systems may also be used. For instance, the Department of Transportation (DOT) has a labeling system for the shipment of hazardous materials. Examples of DOT placards are shown within the text of this chapter.
3.4 CHEMICAL SAFETY GUIDELINES

Always follow these guidelines when working with chemicals: Assume that any unfamiliar chemical is hazardous and treat it as such.

a. Know all the hazards of the chemicals with which you work. For example, perchloric acid is a corrosive, an oxidizer, and a reactive. Benzene is an irritant that is also flammable, toxic, and carcinogenic.

b. Never underestimate the potential hazard of any chemical or combination of chemicals. Consider any mixture or reaction product to be at least as hazardous as – if not more hazardous than – its most hazardous component.

c. Never use any substance that is not properly labeled. It may not be what you think it is!

d. Date all chemicals when they are received and again when they are opened.

e. Follow all chemical safety instructions, such as those listed in Safety Data Sheets or on chemical container labels, precisely.

f. Minimize your exposure to any chemical, regardless of its hazard rating, and avoid repeated exposure.

g. Use personal protective equipment (PPE), as appropriate for that chemical.

h. Use the buddy system when working with hazardous chemicals. Don’t work in the laboratory alone.

3.5 SAFETY DATA SHEETS

Before using any chemical, read the appropriate Safety Data Sheet (SDS). An SDS is a document that details information about chemicals and along with the container label is a good source of information for chemical safety. The SDS provides the following information:

Section 1- Identification:
includes product identifier; manufacturer or distributor name, address, phone number; emergency phone number; recommended use; restrictions on use.

Section 2- Hazard(s) identification:
includes all hazards regarding the chemical; required label elements.

Section 3- Compositions/information on ingredients:
includes information on chemical ingredients; trade secret claims.

Section 4- First-aid measures:
includes important symptoms/effects, acute, delayed; required treatment.
Section 5 - Fire-fighting measures:
lists suitable extinguishing techniques, equipment; chemical hazards from fire.

Section 6 - Accidental release measures:
lists emergency procedures; protective equipment; proper methods of containment and cleanup.

Section 7 - Handling and storage:
lists precautions for safe handling and storage, including incompatibilities.

Section 8 - Exposure controls/personal protection:
lists OSHA's Permissible Exposure Limits (PELs); ACGIH Threshold Limit Values (TLVs); and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the SDS where available as well as appropriate engineering controls; personal protective equipment (PPE).

I. Permissible Exposure Limit (PEL) or Recommended Exposure Limit (REL) – This is the amount of a chemical that a person can be exposed to, averaged over an eight-hour period, before it causes him/her harm.

II. Short Term Exposure Limit (STEL) – This is the amount of a chemical that a person can be exposed to, averaged over a 15-minute period, before it causes him/her harm.

III. Immediately Dangerous to Life and Health (IDLH) – This is the amount of chemical that immediately puts a person at risk of serious injury or death. If this level is reached or exceeded, the area should be evacuated immediately!

Section 9 - Physical and chemical properties:
lists the chemical’s characteristics.

Section 10 - Stability and reactivity:
lists chemical stability and possibility of hazardous reactions.

Section 11 - Toxicological information:
includes routes of exposure; related symptoms, acute and chronic effects; numerical measures of toxicity.

Section 12 - Ecological Information (not mandatory):
provides information to evaluate the environmental impact of the chemical(s) if it were released to the environment.
Section 13 - Disposal consideration (not mandatory): provides guidance on proper disposal practices, recycling or reclamation of the chemical(s) or its container, and safe handling practices.

Section 14 - Transport information (not mandatory): guidance on classification information for shipping and transporting of hazardous chemical(s) by road, air, rail, or sea.

Section 15 - Regulatory information (not mandatory): identifies the safety, health and environmental regulations specific for the product that is not indicated anywhere else on the SDS.

Section 16 - Other information: indicates when the SDS was prepared or when the last know revision was made. The SDS may also state where the changes have been made to the previous version. Other useful information also may be included here.

Each person working with chemicals should have access to the SDS for all chemicals they use. “Access” may be:

- A current hard copy kept in a work area file or binder.
- An electronic copy.

3.6 SAFE HANDLING GUIDELINES

Employees should treat all chemicals and equipment with caution and respect. When working with chemicals, remember to do the following:

- Wear appropriate personal protective equipment (PPE) for the chemical hazard.
- Remove and use only the amount of chemicals needed for the immediate job at hand.
- Properly seal, label, and store chemicals in appropriate containers. Keep the containers clearly marked and in a well-ventilated area.
- Segregate and store chemicals by their hazard class.
- Check stored chemicals for deterioration and for damage to the containers.
- Learn how to dispose of chemicals safely and legally. Follow TAMUCC waste disposal requirements. [See Chapter 4 – Laboratory Waste Disposal.]
- Clean up spills and leaks immediately.
- Develop a Plan of Action for how to respond in an emergency. Review this plan regularly to be familiar with it.
i. Do not store chemicals near heat, in sunlight, or near substances which might initiate a dangerous reaction.

j. When transporting chemicals between the work area and other areas, use secondary containment (such as a tray, rack, cart or rubber carrier) to protect against spills, leaks or container breakage. Always use a secondary container when transporting hazardous or highly odorous chemicals on an elevator.

k. Never pour any chemicals down the sink. Use proper hazardous waste disposal procedures for all excess or unused chemicals.

3.7 CHEMICAL STORAGE GUIDELINES

Proper chemical storage is as important to safety as proper chemical handling. Often, seemingly logical storage ideas, such as placing chemicals in alphabetical order, may cause incompatible chemicals to be stored together.

GENERAL STORAGE GUIDELINES

Follow these guidelines for safe chemical storage:

a. Read chemical labels and the SDS for specific storage instructions.
b. Store chemicals in a well-ventilated area; however, do not store chemicals in a fume hood.
c. Date all chemicals when they are received and again when they are opened.
d. Maintain an inventory of all chemicals in storage. An electronic copy of the inventory should be maintained at a location other than the laboratory.
e. Return chemical containers to their proper storage location after use.
f. Store glass chemical containers so that they are unlikely to be broken. Glass containers should never be stored directly on the floor.
g. Store all hazardous liquid chemicals below eye level of the shortest person working in the laboratory.
h. Never store hazardous chemicals in a public area or corridor. Hazardous chemicals must be kept in a secured area.

SEPARATING AND STORING HAZARDOUS CHEMICALS

In addition to the guidelines above, there are storage requirements for separating hazardous chemicals. Follow these guidelines to ensure that hazardous chemicals are stored safely:
a. Group chemicals according to their hazard category (i.e., corrosives, flammables, toxins, etc.), not alphabetically, and separated by some sort of physical barrier. An alphabetical storage system may place incompatible chemicals next to each other.
b. Separate acids from bases and inorganic acids or bases from organic acids or bases. Store these chemicals near floor level.
c. Isolate perchloric acid from all other chemicals and from organic materials. Do not store perchloric acid on a wooden shelf or spill paper.
d. Separate highly toxic chemicals and carcinogens from all other chemicals. This storage location should have a warning label and should be locked.
e. Time-sensitive chemicals, such as those that form peroxides, should not be kept longer than twelve months from purchase or six months after opening. If stratification of liquids, precipitate formation, and/or change in color or texture is noted, do not touch the container, a hazard exists, contact E,H&S immediately.
f. Picric acid must be stored under a layer of liquid, as picric crystals are highly explosive. If picric acid dries out (forming yellow crystals), do not touch the container! Contact the Principal Investigator and E,H&S immediately!
g. If flammables need to be chilled, store them in an explosion proof laboratory-safe refrigerator, not in a standard (household style) refrigerator.
h. Chemicals may be stored in the cabinets underneath a chemical fume hood provided the cabinetry is designed for that use.
 i. Cabinetry designed for flammable storage vents into the fume hood exhaust duct.
 ii. Cabinetry designed for corrosives storage vents directly into the fume hood. Flammable chemicals should never be stored in this type of cabinets!
 iii. Some cabinetry is only designed for general storage or with a drying rack. These cabinets are not meant to be used for hazardous chemical storage.
i. Flammables should be stored in a well ventilated area and large quantities in a flammable storage cabinet. Contact E,H&S for more information on allowable storage of flammable liquids per NFPA Code.
The following table provides examples of incompatible chemicals:

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>INCOMPATIBLE WITH . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates</td>
</tr>
<tr>
<td>Acetylene</td>
<td>Chlorine, bromine, copper, fluorine, silver, mercury</td>
</tr>
<tr>
<td>Acetone</td>
<td>Concentrated nitric and sulfuric acid mixtures</td>
</tr>
<tr>
<td>Alkali metals</td>
<td>Water, carbon tetrachloride or other chlorinated hydrocarbons, carbon dioxide, halogens</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrofluoric acid</td>
</tr>
<tr>
<td>Chlorates</td>
<td>Ammonium salts, acids, powdered metals, sulfur, finely divided organic or combustible materials</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Ammonia, acetylene, butadiene, butane, methane, propane (or other petroleum gases), hydrogen, sodium carbide, benzene, finely divided metals, turpentine</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Acids</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Most other chemicals</td>
</tr>
<tr>
<td>Nitrates</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Oils, grease, hydrogen, flammable liquids, solids, or gases</td>
</tr>
<tr>
<td>Perchloric acid</td>
<td>Acetic anhydride, bismuth and its alloys, alcohol, paper, wood, grease, oils</td>
</tr>
<tr>
<td>Sodium</td>
<td>Carbon tetrachloride, carbon dioxide, water</td>
</tr>
<tr>
<td>Sulfides</td>
<td>Acids</td>
</tr>
</tbody>
</table>

3.8 HYGIENE AND CHEMICAL SAFETY

Good personal hygiene will help minimize exposure to hazardous chemicals. When working with chemicals, follow these guidelines:

- Wash hands frequently and before leaving the laboratory. Also, wash hands before eating, drinking, smoking or applying makeup.
- Wear appropriate personal protective equipment (PPE). Always wear protective gloves when handling any hazardous chemicals.
c. Remove PPE before leaving the laboratory and before washing hands.
d. Remove contaminated clothing immediately. Do not use the clothing again until it has been properly decontaminated.
e. Follow any special precautions for the chemicals in use.
f. Do not eat, drink, smoke or apply makeup around chemicals.
g. Tie back long hair when working in a laboratory or around hazardous chemicals.
h. Do not keep food, beverages, or food and beverage containers anywhere near chemicals or in laboratories where chemicals are in use.
i. Do not use laboratory equipment, including laboratory refrigerators/freezers, to store or serve food or drinks.
j. Do not wash food and beverage utensils in a laboratory sink.
k. Do not sniff or taste chemicals.
l. Do not touch door knobs, telephones, computer keyboards, etc. with contaminated gloves.

3.9 TYPES OF CHEMICAL HAZARDS

CORROSIVES

Corrosive chemicals destroy or damage living tissue by direct contact. Some acids, bases, dehydrating agents, oxidizing agents, and organics are corrosives. Examples of the different types of corrosive chemicals are listed below:

- Acidic corrosives:
 - Inorganic Acids
 - Hydrochloric acid
 - Nitric Acid
 - Sulfuric acid
 - Organic Acids
 - Acetic Acid
 - Propionic acid
- Alkaline, or basic, corrosives:
 - Sodium hydroxide
 - Potassium hydroxide
- Corrosive dehydrating agents:
 - Phosphorous pentoxide
 - Calcium oxide
- Corrosive oxidizing agents:
 - Halogen gases
 - Hydrogen peroxide (concentrated)
 - Perchloric acid
- Organic corrosive:
 - Butylamine
Health Consequences

Extreme caution should be taken when handling corrosive chemicals, or severe injury may result.

a. Concentrated acids can cause painful and sometimes severe burns.

b. Inorganic hydroxides can cause serious damage to skin tissues because a protective protein layer does not form. Even a dilute solution such as sodium or potassium hydroxide can saponify fat and attack skin.

c. At first, skin contact with phenol may not be painful, but the exposed area may turn white due to the severe burn. Systemic poisoning may also result from dermal exposure.

d. Skin contact with low concentrations of hydrofluoric acid (HF) may not cause pain immediately but can still cause tissue damage if not treated properly. Higher concentrations of HF (50% or greater) can cause immediate, painful damage to tissues.

Safe Handling Guidelines for Corrosives

To ensure safe handling of corrosives, the following special handling procedures should be used:

a. Always store corrosives properly. Segregate acids from bases and inorganics from organics.

b. Always wear a laboratory coat, gloves and chemical splash goggles when working with corrosives. Wear other personal protective equipment, as appropriate.

c. To dilute acids, carefully add the acid to the water, not the water to the acid. This will minimize any reaction.

d. Corrosives, especially inorganic bases (e.g., sodium hydroxide), may be very slippery; handle these chemicals with care and clean any spills, leaks, splashes, or dribbles immediately.

e. Work in a chemical fume hood when handling fuming acids or volatile irritants (e.g., ammonium hydroxide).

f. A continuous flow eye wash station should be in every work area where corrosives are present. An emergency shower should also be within 55 feet of the area.

Corrosive Example: Perchloric Acid

Perchloric acid is a corrosive oxidizer that can be dangerously reactive. At elevated temperatures, it is a strong oxidizing agent and a strong dehydrating reagent. Perchloric acid reacts violently with organic materials. When
combined with combustible material, heated perchloric acid may cause a fire or explosion. Cold perchloric acid at less than 70% concentration is not a very strong oxidizer, but its oxidizing strength increases significantly at concentrations higher than 70%. Anhydrous perchloric acid (>85%) is very unstable and can decompose spontaneously and violently.

When using perchloric acid, remember the following:

a. Be thoroughly familiar with the special hazards associated with perchloric acid before using it.
b. If possible, purchase 60% perchloric acid instead of a more concentrated grade.
c. Always wear rubber gloves and chemical splash goggles while using perchloric acid. Consider also wearing a face shield and rubber apron if splashing is likely.
d. Store perchloric acid inside secondary containment (such as a Pyrex dish) and segregated from all other chemicals and organic materials. Do not store bottles of perchloric acid in wooden cabinets or on spill paper.

IMPORTANT: Heated digestions with perchloric acid require a special fume hood with a wash-down system. A perchloric acid fume hood should also be used when handling highly concentrated (greater than 70%) perchloric acid. Refer to the “Laboratory Ventilation Equipment” section of Chapter 5 – How to Protect Yourself for more information on these hoods.

FLAMMABLES

A flammable chemical is any solid, liquid, vapor, or gas that ignites easily and burns rapidly in air. Consult the appropriate SDS before beginning work with flammables.

Flashpoint, Boiling Point, Ignition Temperature, and Class

Flammable chemicals are classified according to flashpoint, boiling point, fire point, and auto-ignition temperature.

a. **Flash Point (FP)** is the lowest temperature at which a flammable liquid's vapor burns when ignited.
b. **Boiling Point (BP)** is the temperature at which the vapor pressure of a liquid is equal to the atmospheric pressure under which the liquid vaporizes. Flammable liquids with low BPs generally present special fire hazards.
c. **Fire Point** is the temperature at which the flammable liquid will burn.
d. Auto-ignition Temperature is the lowest temperature at which a substance will ignite without an ignition source.

Flammable liquids are classified according to how easily they burn. The following table illustrates flammable class characteristics as defined by NFPA 45:

<table>
<thead>
<tr>
<th>FLAMMABLE CLASS</th>
<th>FLASHPOINT (°F)</th>
<th>BOILING POINT (°F)</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td><73</td>
<td><100</td>
<td>Ethyl ether "Flammable" aerosols</td>
</tr>
<tr>
<td>1B</td>
<td><73</td>
<td>≥100</td>
<td>Acetone Gasoline Toluene</td>
</tr>
<tr>
<td>1C</td>
<td>≥73</td>
<td><100</td>
<td>Butyl alcohol Methyl isobutyl ketone Turpentine</td>
</tr>
<tr>
<td>2</td>
<td>100 - 140</td>
<td>---</td>
<td>Cyclohexane Kerosene Mineral spirits</td>
</tr>
<tr>
<td>3A</td>
<td>140 - 199</td>
<td>---</td>
<td>Butyl cellosolve</td>
</tr>
<tr>
<td>3B</td>
<td>>200</td>
<td>---</td>
<td>Cellosolve Ethylene glycol Hexylene glycol</td>
</tr>
</tbody>
</table>

The following table provides examples of common flammables and their flashpoint and class.

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>FLASHPOINT (°F)</th>
<th>FLAMMABLE CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>0</td>
<td>1B</td>
</tr>
<tr>
<td>Benzene</td>
<td>12</td>
<td>1B</td>
</tr>
<tr>
<td>Butyl Acetate</td>
<td>>72</td>
<td>1C</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>-22</td>
<td>1B</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>-4</td>
<td>1B</td>
</tr>
<tr>
<td>Diethylene Glycol</td>
<td>225</td>
<td>3B</td>
</tr>
<tr>
<td>Ethanol ether</td>
<td>-49</td>
<td>1A</td>
</tr>
<tr>
<td>Ethanol</td>
<td>55</td>
<td>1B</td>
</tr>
<tr>
<td>Heptane</td>
<td>25</td>
<td>1B</td>
</tr>
<tr>
<td>Isopropyl Alcohol</td>
<td>53</td>
<td>1B</td>
</tr>
<tr>
<td>Methanol</td>
<td>52</td>
<td>1B</td>
</tr>
<tr>
<td>Pentane</td>
<td><40</td>
<td>1A</td>
</tr>
<tr>
<td>Toluene</td>
<td>40</td>
<td>1B</td>
</tr>
</tbody>
</table>
Conditions for a Fire

Improper use of flammable liquids can cause a fire. The following conditions must exist for a fire to occur:

- Flammable material (i.e., fuel) must be present in sufficient concentration to support a fire.
- Oxygen or an oxidizer must be present.
- An ignition source (i.e., heat, spark, etc.) must be present.

When working with flammables, always take care to minimize vapors which act as fuel.

Safe Handling Guidelines for Flammables

a. Handle flammable chemicals in areas free from ignition sources.
b. Never heat flammable chemicals with an open flame. Use a water bath, oil bath, heating mantle, hot air bath, hot plate, etc. Such equipment should be intrinsically safe, with no open sparking mechanisms.

define

NOTE: When using an oil bath, make sure the temperature is kept below the oil flash point.

c. Use ground straps when transferring flammable chemicals between metal containers to avoid generating static sparks.
d. Work in an area with good general ventilation and use a fume hood when there is a possibility of dangerous vapors. Ventilation will help reduce dangerous vapor concentrations, thus minimizing this fire hazard.
e. Restrict the amount of stored flammables in the laboratory, and minimize the amount of flammables present in a work area.

NOTE: The NFPA has established formal limits on the total amounts of flammable liquids that may be stored or used in laboratories. (NFPA 30 and 45).

f. Only remove from storage the amount of chemical needed for a particular experiment or task.

SOLVENTS

Organic solvents are often the most hazardous chemicals in the work place. Solvents such as ether, alcohols, and toluene,
for example, are highly volatile and flammable. Perchlorinated solvents, such as carbon tetrachloride (CCl₄), are non-flammable. But most hydrogen-containing chlorinated solvents, such as chloroform, are flammable. When exposed to heat or flame, chlorinated solvents may produce carbon monoxide, chlorine, phosgene, or other highly toxic gases.

Always use volatile and flammable solvents in an area with good ventilation or preferably in a fume hood. Never use ether or other highly flammable solvents in a room with open flames or other ignition sources present, including non-intrinsically safe fixtures.

Solvent Exposure Hazards

Health hazards associated with solvents include exposure by the following routes:

- **Inhalation** of a solvent may cause bronchial irritation, dizziness, central nervous system depression, nausea, headache, coma, or death. Prolonged exposure to excessive concentrations of solvent vapors may cause liver or kidney damage. The consumption of alcoholic beverages can enhance these effects.
- **Skin contact** with solvents may lead to defatting, drying, and skin irritation.
- **Ingestion** of a solvent may cause sever toxicological effects. Seek medical attention immediately.

The odor threshold for the following chemicals exceeds acceptable exposure limits. Therefore, if you can smell it, you may be overexposed — *increase ventilation immediately!* Examples of such solvents are:

- Chloroform
- Benzene
- Carbon tetrachloride
- Methylene chloride

NOTE: Do not depend on your sense of smell alone to know when hazardous vapors are present. The odor of some chemicals is so strong that they can be detected at levels far below hazardous concentrations (e.g., xylene).

Some solvents (e.g., benzene) are known or suspected carcinogens.
Reducing Solvent Exposure

To decrease the effects of solvent exposure, substitute hazardous solvents with less toxic or hazardous solvents whenever possible. For example, use hexane instead of diethyl ether, benzene or a chlorinated solvent.

Solvent Example: DMSO

Dimethyl sulfoxide (DMSO) is unique because it is a good solvent with many water-soluble as well as lipid-soluble materials. Due to these properties, dimethyl sulfoxide is rapidly absorbed and distributed throughout the body.

DMSO can facilitate absorption of other chemicals – such as grease, oils, cosmetics – that may contact the skin.

- While DMSO alone has low toxicity, when combined with other, more toxic chemicals it can cause the more toxic chemical to be absorbed more readily through the skin.
- Some medications, such as liniment, also contain DMSO.

While relatively stable at room temperature, DMSO can react violently to other chemicals when heated.

Wear impervious clothing and personal protective equipment (laboratory coat, gloves, etc.) to prevent skin exposure. Use chemical splash goggles and/or a face shield if splashing may occur.

TOXINS AND IRRITANTS

The toxicity of a chemical refers to its ability to damage an organ system (kidneys, liver), disrupt a biochemical process (e.g., the blood-forming process) or disrupt cell function at some site remote from the site of contact. Any substance, even water, can be harmful to living things under the right conditions.

The biological effects – whether beneficial, indifferent or toxic – of all chemicals are dependent on a number of factors, including:

- Dose (the amount of chemical to which one is exposed)
- Duration of exposure (both length of time and frequency)
- Route of entry:
 - Ingestion
 - Absorption through the skin
 - Inhalation
 - Injection
NOTE: Inhalation and dermal absorption are the most common methods of chemical exposure in the workplace.

- Individual response and history
- One’s exposure to other chemicals
- Mixing the toxin with other chemicals

The most important factor in toxicity is the dose-time relationship. In general, the more toxin to which an individual is exposed, and the longer they are exposed to it, the stronger their physiological response will be. However, an individual’s response can also depend on several other factors, including:

- Health
- Gender
- Genetic predisposition
- An individual’s exposure to other chemicals
- Previous sensitization

NOTE: When a person becomes sensitized to a chemical, each subsequent exposure may often produce a stronger response than the previous exposure.

- Chemical mixtures

NOTE: Combining a toxic chemical with another chemical can increase the toxicity of either or both chemicals.

IMPORTANT: Minimize exposure to any toxic chemical.

General Safe Handling Guidelines

a. Read the appropriate SDS.
b. Be familiar with the chemical’s exposure limits.
c. Use a chemical fume hood.
d. Always wear appropriate PPE.
e. Never eat, drink, or use tobacco products around toxins or store them near any hazardous chemicals.
f. Avoid touching your face or other exposed skin with contaminated gloves or other contaminated materials.
g. Store toxic gases in a gas exhaust cabinet.

Acute Toxins vs. Chronic Toxins

The dose-time relationship forms the basis for distinguishing between acute toxicity and chronic toxicity.
The **acute toxicity** of a chemical is its ability to inflict bodily damage from a single exposure. A sudden, high-level exposure to an acute toxin can result in an emergency situation, such as a severe injury or even death. Examples of acute toxins include the following:

- Hydrogen cyanide
- Hydrogen sulfide
- Nitrogen dioxide
- Ricin
- Organophosphate pesticides
- Arsenic

IMPORTANT: Do not work alone when handling acute toxins. Use a fume hood to ensure proper ventilation, or wear appropriate respiratory protection if a fume hood is not available.

Chronic toxicity refers to a chemical’s ability to inflict systemic damage as a result of repeated exposures, over a prolonged time period, to relatively low levels of the chemical. Such prolonged exposure may cause severe injury. Examples of chronic toxins include the following:

- Mercury
- Lead
- Formaldehyde

Some chemicals are extremely toxic and are known primarily as acute toxins. Some are known primarily as chronic toxins. Others can cause either acute or chronic effects.

The toxic effects of chemicals can range from mild and reversible (e.g. a headache from a single episode of inhaling the vapors of petroleum naphtha that disappears when the victim gets fresh air) to serious and irreversible (liver or kidney damage from excessive exposures to chlorinated solvents). The toxic effects from chemical exposure depend on the severity of the exposures. Greater exposure and repeated exposure generally lead to more severe effects.

Types of Toxins

Carcinogens are materials that can cause cancer in humans or animals. Several agencies including OSHA (Occupational Safety & Health Administration), NIOSH (The National Institute for Occupational Safety and Health), and IARC (International Agency for Research on Cancer) are
responsible for identifying carcinogens. There are very few chemicals known to cause cancer in humans, but there are many suspected carcinogens and many substances with properties similar to known carcinogens.

Examples of known carcinogens include the following:

- Asbestos
- Benzene
- Tobacco smoke
- Hexavalent Chromium
- Aflatoxins

Zero exposure should be the goal when working with known or suspected carcinogens. Workers who are routinely exposed to carcinogens should undergo periodic medical examinations.

Reproductive toxins are chemicals that can adversely affect a person’s ability to reproduce. Teratogens are chemicals that adversely affect a developing embryo or fetus. Heavy metals, some aromatic solvents (benzene, toluene, xylenes, etc.), and some therapeutic drugs are among the chemicals that are capable of causing these effects. In addition, the adverse effects produced by ionizing radiation, consuming alcohol, using nicotine and using illicit drugs are recognized.

While some factors are known to affect human reproduction, knowledge in this field (especially related to the male) is not as broadly developed as other areas of toxicology. In addition, the developing embryo is most vulnerable during the time before the mother knows she is pregnant. Therefore, it is prudent for all persons with reproductive potential to minimize chemical exposure.

Sensitizers may cause little or no reaction upon first exposure. Repeated exposures may result in severe allergic reactions.

Examples of sensitizers include the following:

- Isocyanates
- Nickel salts
- Beryllium compounds
- Formaldehyde
- Diazomethane
- Latex
NOTE: Some people who often use latex-containing products may develop sensitivity to the latex. A sensitized individual’s reaction to latex exposure can eventually include anaphylactic shock, which can result in death. To minimize exposure to latex, use non-latex containing gloves, such as nitrile gloves.

Irritants cause reversible inflammation or irritation to the eyes, respiratory tract, skin, and mucous membranes. Irritants cause inflammation through long-term exposure or high concentration exposure. For the purpose of this section, irritants **do not** include corrosives.

Examples of irritants include the following:

- Ammonia
- Formaldehyde
- Halogens
- Sulfur dioxide
- Poison ivy
- Phosgene
- Dust
- Pollen
- Mold

Mutagens can alter DNA structure. Some mutagens are also carcinogens. Examples of mutagens are:

- Ethidium bromide
- Nitrous acid
- Radiation

Neurotoxins are chemicals that affect the nervous system. Examples of neurotoxins include:

- Methanol
- Many snake and insect venoms
- Botulinum toxin

REACTIVES AND EXPLOSIVES

Reactive chemicals may be sensitive to either friction or shock, or they may react in the presence of air, water, light, heat, or other chemicals. Some reactive chemicals are inherently unstable and may quickly decompose on their own, releasing energy in the process. Others form toxic gases when reacting. **Explosive chemicals** decompose or burn very rapidly when subjected to shock or ignition. Reactive and explosive
chemicals produce large amounts of heat and gas when triggered, and thus are extremely dangerous.

Follow these guidelines when handling and storing reactive and explosive chemicals:

a. Read the appropriate SDS and other pertinent fact sheets on the chemical. Be familiar with chemical specific handling and storage requirements.

b. Follow Standard Operating Procedures and to have a Plan of Action established for how to handle emergency situations.

c. Isolate the chemical from whatever causes a reaction.
 i. Store reactives separate from other chemicals.
 ii. Store reactives in a cool/dry area.
 iii. Keep reactive chemicals out of sunlight and away from heat sources.

d. Know where emergency equipment is located and how to use it.

Examples of reactive compounds include the following:

<table>
<thead>
<tr>
<th>REACTIVE CLASSIFICATION</th>
<th>CHEMICAL EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylenic compounds</td>
<td>Acetylene
Copper(I) acetylide</td>
</tr>
<tr>
<td>Azides</td>
<td>Benzenesulfonyl azide
Lead (II) azide</td>
</tr>
<tr>
<td>Azo compounds</td>
<td>Azomethane
Diazomethane</td>
</tr>
<tr>
<td>Chloro/perchloro compounds</td>
<td>Lead perchlorate
Potassium chlorite
Silver chlorate
Perclooric Acid (Anhydrous)</td>
</tr>
<tr>
<td>Fulminates</td>
<td>Copper (II) fulminate
Silver fulminate</td>
</tr>
<tr>
<td>Nitro compounds</td>
<td>Nitromethane
Trinitrotoluene (TNT)</td>
</tr>
<tr>
<td>Nitrogen-containing compounds</td>
<td>Silver amide
Silver nitride</td>
</tr>
<tr>
<td>Organic peroxide formers</td>
<td>Diethyl ether
Isopropyl ether</td>
</tr>
<tr>
<td>Picrates</td>
<td>Picric acid (dry)
Lead picrate</td>
</tr>
<tr>
<td>Peroxides</td>
<td>Diacetyl peroxide
Zinc peroxide</td>
</tr>
<tr>
<td>Strained ring compounds</td>
<td>Benzvalene
Prismane</td>
</tr>
<tr>
<td>Polymerizable compounds</td>
<td>Butadiene
Vinyl chloride</td>
</tr>
</tbody>
</table>
3.10 **PROTECTING ONESelf WHEN WORKING WITH CHEMICALS**

For information on ways to protect oneself when working with chemicals, including information on personal protective equipment, engineering controls, and how to respond to chemical spills and exposures, see Section 5 of this manual, which is titled, “How to Protect Yourself.”

3.11 **CHEMICAL WASTE DISPOSAL**

Chemical waste must be disposed of as hazardous waste. For information on chemical waste disposal, see Section 4 – Laboratory Waste Disposal.

3.12 **TRANSPORTING HAZARDOUS MATERIALS**

The U.S. Department of Transportation regulates the shipment of hazardous materials. Anyone who packages, receives, unpacks, signs for, or transports hazardous chemicals must be trained and certified in Hazardous Materials Transportation. Warehouse personnel, shipping and receiving clerks, truck drivers, and other employees who pack or unpack hazardous materials must receive this training as well.
4.0 LABORATORY WASTE DISPOSAL

Disposal of hazardous materials is regulated by various federal and state agencies. Laboratory waste very often includes hazardous chemical, biological, or radiological materials. Thus, proper disposal of laboratory waste is not only prudent, it is mandatory. Environmentally sound disposal methods prevent harm to the water, land, and air and by extension, to people as well. Proper disposal techniques also protect waste handlers from harm.

Laboratory waste disposal can be broken down into five categories – hazardous (chemical) waste, biological waste, radioactive waste, glass waste, and metal (sharps) waste – which are discussed below.

4.1 HAZARDOUS CHEMICAL WASTE

The term “hazardous waste” refers to hazardous chemical waste. If waste chemicals contain infectious materials or biological hazards, label the waste “biological waste” for handling by the disposal company. Once the biological hazard has been eliminated, then the waste can be managed as hazardous waste. Any waste containing radioactive materials must be managed as radiological waste.

Disposal of hazardous waste is governed by the Environmental Protection Agency (EPA) and by the Texas Commission on Environmental Quality (TCEQ) through Federal and State regulations. TAMUCC complies with hazardous waste disposal regulations by following the TAMU-CC Hazardous Waste Management Program." For more information on hazardous waste disposal regulations and definitions, refer to this program.

Laboratory personnel can ensure compliance with the Hazardous Waste Management Program by following a few simple steps:

- Never dispose of chemicals improperly. Improper disposal includes
 a. Pouring chemicals down the drain;
 b. Leaving uncapped chemical containers in the fume hood to evaporate off the chemical; and
 c. Disposing of chemicals in the regular trash.
- Collect waste in a leak proof container that is in good condition, that can be securely closed, and that is appropriate and compatible for the given chemical.

NOTE: If a large waste container (>10 gallons) is warranted, contact E,H&S for assistance.

- When reusing a container to collect chemical waste, completely deface or remove the original label.
Label the container:

- The words “Hazardous Waste” must be written on the container or a preprinted Hazardous Waste label can be affixed to the container. (See “Hazardous Waste Disposal and Waste Collection” section below.)
- Identify the contents of the waste container on the container label itself and on a Hazardous Waste Inventory. Use the full name of the chemical, not an abbreviation or chemical formula.

Do not mix incompatible waste chemicals in a single container. Use separate waste containers for different waste streams.

Do not overfill the waste container.

- For liquid hazardous waste:
 - Do not fill jugs and bottles past the shoulder of the container.
 - Fill closed head cans (5 gallons or less), leaving approximately two inches of space between the liquid level and the top of the container.
 - Fill closed head drums (larger than 5 gallons), leaving approximately four inches of space.

- For solid hazardous waste materials, do not fill beyond the weight capacity of the container, and leave at least two inches head space for closure.

Keep waste containers closed. Waste containers should only be open when adding or removing material.

HAZARDOUS WASTE DISPOSAL AND WASTE COLLECTION

When the waste container is ready for disposal, it should be labeled as Hazardous Waste. These labels may be affixed or attached to the container. Fill out the label following the guidelines below:

1) The words “Hazardous Waste” must be used for chemicals requiring disposal.
2) List all chemical components, including water, with an approximate percentage of the materials in the container.
3) Use full chemical names or common names. Chemical formulas or abbreviations are not acceptable.
4) Indicate the percent concentration of potentially explosive materials such as picric acid and nitro compounds.
5) Place additional hazard information on the label
6) Attach the label to the container.

To schedule waste to be removed from a laboratory, send an inventory of all waste containers ready for disposal to E, H&S by email at ehs@tamucc.edu.
NOTE: Some departments have Laboratory Coordinators that may remove the waste containers from the lab and accumulate them for pick-up. If waste is taken by the Laboratory Coordinator, the waste inventory should remain with the coordinator. For more information, contact E,H&S.

DISPOSING OF EMPTY CHEMICAL CONTAINERS

Empty chemical containers may be disposed of in the regular trash provided the following EPA requirements are met:

1) Containers must not contain free liquid or solid residue.
2) Containers must be triple rinsed.
3) Product labels must be defaced or removed.
4) Container lids or caps must be removed.
5) Render metal containers and plastic jugs unusable by punching holes in the bottom of the containers before disposing of them in the regular trash. (It is not necessary to break empty glass containers.)

IMPORTANT: Containers that do not meet the requirements mentioned here must be treated as hazardous waste.

Refer to the Hazardous Waste Management Program for more information on hazardous waste disposal procedures and regulations as well as information on waste reduction and minimization.

4.2. BIOLOGICAL WASTE

The Texas Department of State Health Services (TDSHS) and the Texas Commission on Environmental Quality (TCEQ) regulate the disposal of biohazardous materials. Biohazardous materials include organisms or substances derived from biological materials or organisms that may be harmful to humans, animals, plants, or the environment. Biohazardous waste includes any waste materials that contain biohazardous materials, such as

- Waste (including blood) from and bedding or litter used by infectious animals
- Bulk human blood or blood products and waste materials contaminated with human blood
- Microbiological waste (including pathogen-contaminated disposable culture dishes and disposable devices used to transfer, inoculate, and mix pathogenic cultures)
- Biological pathogens
- Sharps
- Any recombinant (rDNA) materials and products of genetic manipulation
IMPORTANT: *All biohazardous material must be decontaminated prior to disposal.*

Biohazardous waste mixed with hazardous chemical or radioactive waste must be labeled prior to disposal.

There are strict safety requirements regarding segregation, labeling, packaging, treatment (including documentation), and transportation of biohazardous waste. The guidelines below should be followed:

1. Do not mix biological waste with chemical waste or other laboratory trash.
2. Segregate hazardous biological waste from nonhazardous biological waste.
3. Clearly label each container of untreated biohazardous waste and mark it with the Biohazard Symbol.
4. It is recommended to label nonhazardous biological waste as "NONHAZARDOUS BIOLOGICAL WASTE."

4.3 Glass Waste

Glassware should never be disposed of in the regular trash. Pasteur pipettes and broken glass can break through trash bags and cut individuals who handle trash. Follow these guidelines when disposing of broken glass:

- Do not pick up broken glass with bare or unprotected hands. Use a brush and dust pan to clean up broken glass. Remove broken glass in sinks by using tongs for large pieces and cotton held by tongs for small pieces and slivers.
- Glass contaminated with biological agents must be decontaminated by thermal or chemical treatment before disposal.
- Glassware contaminated with chemical or radiological materials must also be decontaminated prior to disposal. If decontamination is not possible, the glass should be disposed of as hazardous or radioactive waste. Place non-contaminated broken glass in a rigid, puncture resistant container such as a sturdy cardboard box. Mark the box "Non-contaminated Broken Glass." Once the box is three-quarters full, seal it shut. The box should then be placed in the dumpster by laboratory personnel. *Custodial staff are not responsible for disposing of glass waste containers.*

NOTE: *If broken glass is commingled with metal sharps, it must be treated as sharps waste and encapsulated before for disposal.*
4.4 **Metal Sharps**

All materials that could cause cuts or punctures, must be contained, encapsulated, and disposed of in a manner that does not endanger other workers. Needles, blades, etc. are considered biohazardous even if they are sterile, capped, and in the original container. The following guidelines apply to handling and disposing of sharps:

1) Metal sharps must be segregated from all other waste.
2) Sharps that have been used with chemical or biological materials should be decontaminated prior to disposal whenever possible.
3) Sharps that have radiological contamination **must** be disposed of as radiological waste.
4) Dispose of sharps in a rigid container, such as a sturdy plastic jar or a metal can.
5) When the container is three-quarters full, encapsulate the sharps with Plaster of Paris or some other solidifying medium.
6) Once the contents are encapsulated, seal the sharps container, label it “Encapsulated Sharps,” and take it to the dumpster.

NOTE: Laboratory personnel are responsible for sharps disposal. Custodial staff are **not** responsible for encapsulating and/or disposing of metal sharps waste.

4.5 **Radioactive Waste**

Radioactive materials, depending upon the license, are regulated by the State of Texas or the Nuclear Regulatory Commission, and these regulations/rules are enforced by E,H&S’s Radiological Safety Program. All radioactive wastes shall be disposed through E,H&S or via written procedures approved by E,H&S. Contact E,H&S for more information on proper disposal of radiological waste.
5.0 HOW TO PROTECT YOURSELF

5.1 ADMINISTRATIVE CONTROLS

Protecting oneself when working in a hazardous environment begins with Administrative Controls, which includes administrative actions, documented training, and pre-planning.

ADMINISTRATIVE ACTIONS

Departments are expected to enforce safety standards through administrative actions in a variety of ways. For instance, employee performance evaluations should reflect that laboratory personnel are following TAMUCC safety standards and protocols in their work areas. Also, it is each department’s responsibility to establish whether safety performance should be included in the grading criteria for laboratory courses.

Appropriate safety signage is another way departments can promote safety in laboratories. Signs indicating the hazards present in the laboratory can be posted on laboratory doors. Signs pointing to the location of safety equipment in or near the laboratory can minimize the consequences of an incident by enabling employees to quickly locate needed equipment. Emergency contact information should be posted outside each laboratory door to make it easier for emergency responders to obtain needed information quickly.

And finally, departments should ensure that all laboratory employees receive proper training for the hazards in their work areas and that such training is properly documented and filed.

EMPLOYEE HAZARD COMMUNICATION TRAINING

Before entering a laboratory, all new laboratory employees, including teaching assistants, must receive training on the hazards they will encounter in their work area. This training includes both general and work area specific Hazard Communication and Bloodborne pathogen training. Bloodborne Pathogen training is required by the TAC title 25. Hazard communication training is required by the Texas Hazard Communication Act (THCA).

General Training

General hazard communication training is provided on-line in TAMU-CC’s TrainTraq. Students receive general safety training by completing a course in the Blackboard Learning Management System or in person by the instructor.

E,H&S also offers an on-line Hazard Communication Training course. If there is not a Laboratory Safety class available for the new employee, the on-line course may be taken to satisfy the general hazard communication training requirement. However, the classroom course covers much more safety information than the on-line course does, and E,H&S recommends that all new employees take the classroom course as
soon as possible, even if the on-line course has already been taken. If desired, the on-line Hazard Communication Training course may be used as refresher training.

Work Area Specific Training

Work area specific training is provided by the principal investigator, laboratory manager and/or laboratory supervisor. This training should focus on the specific hazards in the employee’s work area, such as chemical hazards, equipment hazards, biological hazards, etc. Work area specific training should also include the location of SDSs, the proper use of personal protective equipment, the location and proper use of safety equipment (fume hoods, biological safety cabinets, etc.), the location and use of emergency equipment (showers, eyewashes, fire extinguishers, spill kits, etc.), and the proper response to emergency situations (fires, chemical spills, etc.).

Training should also be provided for new hazards that are introduced into the work area. If new information becomes available for an existing hazard, additional training on that information should be provided.

Training Documentation

Employee safety training must be documented and records maintained for at least five years per the THCA. Completion of both the on-line Hazard Communication Training course is documented in Train Traq. Also, a Hazard Communication Training Record is provided to each person who completes either of these courses. A copy of this record should be maintained in the employee’s personnel records. This document lists the specific topics covered in the training and is the document which state auditors will ask for as proof that Hazard Communication Training has been provided to the employee.

Documentation of Work Area Specific Training should include the date of training, specific topics covered, the name of the person providing the training, and the signature of the trainee. Space is provided on the Hazard Communication Training Record for work area specific training. Departments may also utilize their own training forms.

ADDITIONAL TRAINING OPTIONS

In addition to Hazard Communication Training, E,H&S provides a variety of other training opportunities for TAMUCC laboratory employees. Some training may be required, such as training for employees who will be working with radioactive materials. A list of training courses provided by E,H&S is available on the [E,H&S website](http://ehs.tamu.edu/).
STUDENT SAFETY

Student Training

As required by the Texas A&M University System, “Students enrolled in Laboratory Courses will receive appropriate safety information and instruction if class work involves hazardous chemicals, biohazards and/or the use of specialized equipment.”

Students complete an online safety course presented in the Blackboard Learning Management System. The course presents the potential hazards associated with the laboratory and a list of rules the student is to follow. A quiz completed with 100% is acknowledgement that they have received the rules.

Instruction on safe and proper use of laboratory equipment should also be provided to students as needed. Student training should be documented through written course instructions.

Departmental Oversight of Student Safety

Departments with teaching laboratories should periodically conduct self-evaluations to ensure teaching assistants are enforcing safety rules and students are complying with them. These evaluations should be documented, as should any discrepancies found and steps taken to correct them.

PRE-PLANNING

Many laboratory hazards can be minimized by pre-planning. Before beginning work on a new project, the associated hazards should be considered carefully. What are the sources of danger? Are there chemical, equipment, or electrical hazards? Consider also the risk of an accident or exposure occurring, and what the impact of that incident would be. Also, conduct a thorough safety review of new apparatus.

Once the hazards have been identified, steps to minimize risk should be implemented. This includes utilizing engineering controls (such as fume hoods) and personal protective equipment. If the hazard is chemical, another option would be to substitute a less hazardous chemical. Or perhaps the project can be designed in such a way as to separate incompatibles, such as electrical equipment and water.

Careful planning is essential to a safe laboratory!

5.2 LABORATORY VENTILATION EQUIPMENT

Ventilation in a laboratory is a very important aspect of laboratory safety. General room exhaust is not sufficient to protect the laboratory worker who uses hazardous chemicals,
works with biological agents or uses equipment that generates excess heat. Additional engineering controls are required. This chapter discusses different types of laboratory ventilation.

2.1 Chemical Fume Hoods

Chemical fume hoods provide primary containment in a chemical laboratory. They exhaust toxic, flammable, noxious, or hazardous fumes and vapors by capturing, diluting, and removing these materials. Fume hoods also provide physical protection against fire, spills, and explosions.

For optimum performance and most effective protection, chemical fume hoods should be located away from doorways, supply air vents, and high-traffic areas. Air currents created by passers-by can cause turbulence in a fume hood, which can result in contaminated air being drawn back out of the hood and into the room. Similarly, a supply air vent located directly above a fume hood can also cause turbulence in the hood.

TAMU-CC requires that all chemical fume hoods be ducted to the outside of the building and operate with an average face velocity that is consistent with industry standards. The acceptable range for the average face velocity of a general purpose chemical hood is 95 – 120 feet per minute (fpm). The minimum face velocity at any one measuring point should be at least 80 fpm. (The face of the hood is the opening created when the hood sash – the movable glass window at the front of the hood – is in the open position.)

Types of Fume Hoods

Standard Fume Hoods (aka Constant Air Volume (CAV) fume hoods)

These hoods exhaust a constant volume of air. The velocity of the air passing through the face of a standard fume hood is inversely related to the open face area. Thus, if the sash is lowered, the inflow air velocity increases.

IMPORTANT: Face velocity that is too high may cause turbulence, disturb sensitive apparatus, or extinguish Bunsen burners.
Bypass Fume Hoods

Bypass fume hoods are also constant air volume hoods, but with an improved design. These hoods are designed with a grille-covered opening above the sash. When opened, the sash blocks the grille and does not allow air through. However, as the sash is lowered, air is drawn through the grille, allowing a constant exhaust volume without increasing the velocity of air at the face of the hood. This design helps keep the room ventilation system balanced and helps eliminate the problems with turbulence that high face velocity can cause.

Auxiliary Air Fume Hoods

Auxiliary air fume hoods are also known as "supplied air" or "make-up air" hoods. They use an outside air supply for 50% to 70% of the hood's exhaust requirements. This type of hood is designed to reduce utility costs and conserve energy by reducing the amount of conditioned room air that is pulled through the hood. One disadvantage, however, is that additional ductwork and fans increase the overall cost of these hoods. Also, if the supplied air is tempered, the energy savings is negated, while if it is not tempered, the user may be working under hot or cold air, depending on the season. Un tempered air may also cause condensation in the hood, which can lead to rusting of the hood. The face velocity of an auxiliary air fume hood may vary.

Variable Air Volume Fume Hoods

Just as their name suggests, variable air volume (VAV) hoods are designed to vary the amount of air being exhausted from the fume hood based on the sash position. By varying the exhausted air, these hoods are able to maintain a constant face velocity, no matter where the sash is positioned. VAV hoods are often equipped with an audio/visual alarm to notify the user if the hood is not operating properly.

Special Fume Hoods

Special fume hoods are necessary when working with certain chemicals and operations. Examples of special fume hoods include the following:

Perchloric acid fume hoods: Anyone working with perchloric acid must use a perchloric acid fume hood. These special fume hoods are equipped with a water
spray system to wash down the entire length of the exhaust duct, the baffle, and the wall of the hood. Perchloric acid vapors can condense on the hood ductwork, forming dangerous, explosive metal perchlates. Also, perchloric acid can react with organic materials to form organic perchlates, which are also explosive. For this reason, organic solvents should never be used or stored in a perchloric acid fume hood, and the hood should be labeled “Perchloric Acid Use Only; No Organic Chemicals”. The water wash down system, used periodically or after each use of the hood, removes any perchlates or organic materials that may have accumulated in the hood exhaust system. The wash down system should be activated only when the exhaust fan has been turned off, so that complete coverage can be achieved.

Walk-in hoods: These fume hoods have single vertical sashes or double vertical sashes and an opening that extends to the floor. These hoods are typically used to accommodate large pieces of equipment.

Radioisotope hoods: These hoods are labeled for use with radioactive materials. The interiors of these hoods are resistant to decontamination chemicals. These hoods are also often equipped with High Efficiency Particulate Air (HEPA) filtration. For more information on using radioisotopes in fume hoods, see the Radionuclide Laboratory Procedures Manual.

Ductless hoods: Ductless hoods are designed with a filtration system. Generally, however the filters are not appropriate for use with all chemicals. Also, it is difficult to know when the filters need to be replaced, even if a strict change-out schedule is followed. TAMU-CC and E,H&S do NOT approve of ductless fume hoods.

Fume Hood Safety Considerations

The potential for glass breakage, spills, fires, and explosions is great within a fume hood. To ensure safety and proper fume hood performance, follow these guidelines:

a. Know how to properly operate a fume hood before beginning work.
b. Fume hoods provide the best protection when the fume hood sash is in the closed position.
c. Inspect the fume hood before starting each operation, including any airflow monitors. Do not use the hood if it is not functioning properly; call Facilities Services to have it checked?
d. Keep traffic in front of the fume hood to a minimum and walk slowly when passing by the hood, especially when work is being conducted in the hood. This will reduce the likelihood of creating turbulence in the hood.
e. Use the appropriate type of hood for the work being conducted. For example, when using perchloric acid, use a perchloric acid fume hood.
f. Keep the area in front of the hood clear of obstructions. This will allow room for laboratory workers to move about and will allow sufficient airflow to the hood.

g. Place equipment and chemicals at least six inches behind the fume hood sash. This practice reduces the chance of exposure to hazardous vapors.

h. Do not allow equipment and chemicals to block baffle openings. Blocking these openings will prevent the hood from operating properly.

i. Keep loose paper out of the fume hood. Paper or other debris that enter the exhaust duct of the hood can interfere with the hood's ventilation.

j. Do not store excess chemicals or equipment in fume hoods.

k. Elevate any large equipment within the hood at least three inches to allow proper ventilation under the equipment.

l. When working in a fume hood, set the sash at the lowest working height, about 12 – 15 inches from the base of the hood opening. Close the sash completely when no one is standing at the hood working in it. The only time the sash should be completely open is while setting up equipment.

IMPORTANT: A fume hood's sash is designed to protect the user from dangerous chemical gases and vapors, chemical splashes and potentially flying debris. The sash should be positioned to protect the user's face, neck and upper body. The lower the sash position, the more area of the user's body will be protected.

m. Do not defeat sash stops by removing them or altering their design or function.

n. Wear personal protective equipment, including protective eyewear, as appropriate. The hood does not replace PPE.

o. Keep laboratory doors closed. Laboratory ventilation systems are designed to operate with the doors closed.

p. Do not alter/modify the fume hood or associated duct work. If additional equipment needs to be ventilated, contact E,H&S for an evaluation.

q. Clean up spills in the hood immediately.

IMPORTANT: If a power failure or other emergency occurs (e.g., building fire or fire within the fume hood), close the fume hood sash and ensure safe shutdown of the lab, paying special attention to equipment that may be reenergized when power is restored.

Fume Hood Inspections
Fume hoods should and will be tested at least annually. Fume hoods should also be tested in the following circumstances:

- When an employee requests an inspection.
- After major repair work.
- After a fume hood is moved.
Fume hood testing includes measuring the velocity of airflow through the face of the hood as well as a general inspection of the hood’s condition (sash, lighting, noise level, etc.). If you suspect a problem with your fume hood, contact Facilities Services.

OTHER LABORATORY VENTILATION SYSTEMS

Biological Safety Cabinets (BSCs)

BSCs provide containment for pathogenic materials and are not intended for use as a chemical fume hood. When used and maintained correctly, Class II biosafety cabinets protect the user from exposure to harmful biological agents and also protect the product from contamination by filtering the air inside the cabinet through High Efficiency Particulate Air (HEPA) filters. Before using a biological safety cabinet, laboratory personnel should be thoroughly trained on how to properly use and maintain the cabinet.

Follow these instructions for safe use of a biological safety cabinet:

a. Only biosafety cabinets that are certified according to National Sanitation Foundation (NSF) Standard # 49 may be used with pathogenic or recombinant DNA materials. BSCs must be certified upon installation, upon being moved, after major repair, and at least annually.
 i. Annual service and certification of BSCs are contacted by an outside company.
 ii. BSCs that are not certified annually or that fail certification will be tagged “Not Safe For Use With Pathogens.”

b. Locate biosafety cabinets away from doorways and high traffic areas. As with chemical fume hoods, rapid movement in or near the cabinet can create turbulence, causing contaminants to be drawn out of the cabinet and into the general laboratory area.

c. Restrict entry into the laboratory when work is being conducted in the BSC.

b. Turn off UV light before beginning work in a BSC.

e. Disinfect the biosafety cabinet prior to beginning and after completing work in the cabinet.

f. Allow cabinet to operate without activity at least 15-20 minutes before and after use. This will allow all the air in the cabinet to circulate through the HEPA filters, removing any contaminants that may be present.

g. Keep the BSC clear of clutter and loose paper. Only place items that are needed in the cabinet.

h. Keep clean items and dirty items segregated in the BSC.

i. Provide a waste container inside of the cabinet and keep it covered.

j. Always wear appropriate personal protective equipment.

k. Keep face away from the BSC opening.
1. Never use a Bunsen burner in a biosafety cabinet. Dangerous levels of gas can build up in the cabinet. Also, heat from the open flame can damage the HEPA filters.

m. Clean up spills in the BSC immediately.

Canopy Hoods

These hoods capture upward moving contaminants and are good for heat-producing operations only. Canopy hoods should not be used as chemical fume hoods, as workers may be exposed to contaminants if they work under the hood.

Glove Boxes

Glove boxes are designed to be leak-tight and can be used with highly toxic or air-reactive chemicals and materials. Some glove boxes may also be appropriate for use with some radioactive materials. The leak-tight design provides a controlled atmosphere, protecting both the product and the worker by preventing vapors/moisture, gases, and particulates from entering or leaving the box.

Laminar Flow Hoods

Also known as clean benches, laminar flow hoods provide a continuous flow of HEPA filtered air across the work surface. This design helps prevent contamination of the product, but does not offer any protection to the worker. Laminar flow hoods should only be used with non-hazardous materials.

Snorkel Hoods

Snorkel hoods are small fume exhaust duct connections. They are designed with flexible ducts and are able to be positioned directly over a work area at the bench. For best performance, the snorkel hood should be placed within six inches of the item needing ventilation. Snorkel hoods should only be used to exhaust heat and nuisance odors. They should never be used with highly toxic or flammable chemicals.
5.3 **PERSONAL PROTECTIVE EQUIPMENT**

Personal Protective Equipment (PPE) includes all clothing and work accessories designed to protect employees from workplace hazards. Protective equipment should not replace engineering, administrative, or procedural controls for safety — it should be used in conjunction with these controls. Employees *must* wear protective equipment as required and when instructed by a supervisor.

IMPORTANT: *Personal protective equipment is used to prevent exposure or contamination. PPE should always be removed before coming in contact with other individuals or before going in or near elevators, break rooms, classrooms, bathrooms, etc.* Do not launder personal protective equipment at home.

ARM AND HAND PROTECTION

Arms and hands are vulnerable to cuts, punctures, burns, bruises, electrical shock, chemical spills, and amputation. Forms of hand protection available to employees include but are not limited to:

- Disposable exam gloves
- Chemical resistant gloves (rubber, nitrile, neoprene, etc.)
- Non-asbestos heat-resistant gloves
- Metal-mesh gloves for meat cutters
- Kevlar or Dynema gloves for cut resistance
- Bite-resistant gloves

Always wear the appropriate hand and arm protection. Double your hand protection by wearing multiple gloves when necessary (e.g., two pairs of disposable gloves for work involving biological hazards). For arm protection, wear a long-sleeved shirt, a laboratory coat, chemical-resistant sleeves, or gauntlet-length gloves.

Follow these guidelines to ensure arm and hand safety:

- a. Inspect and test new gloves for defects.
- b. Always wash your hands before and after using gloves.
- c. Wash reusable chemical-protective gloves with soap and water before removing them.
- d. Do not reuse disposable gloves. Turn disposable gloves inside-out as you remove them to avoid contaminating your hands.
- e. Do not wear gloves near moving machinery; the gloves may become caught.
- f. Do not wear gloves with metal parts near electrical equipment.
IMPORTANT: Gloves are easily contaminated. Avoid touching surfaces such as telephones, door knobs, etc. when wearing gloves.

BODY PROTECTION

Hazards that threaten the torso tend to threaten the entire body. A variety of protective clothing, including laboratory coats, long pants, rubber aprons, coveralls, and disposable body suits are available for specific work conditions, including the following:

- Rubber, neoprene, and plastic clothing protect employees from most acids and chemical splashes.
- Laboratory coats, coveralls, and disposable body suits protect employees and everyday clothing from contamination by chemicals, biological materials, dirt and grime, etc.
- Welding aprons provide protection from sparks.
- Chain mail aprons provide protection for meat cutters.

Launder reusable protective clothing separate from other clothing. Do not launder protective clothing at home or in any public facilities outside of the university. A laundry service that specializes in biological or chemical contaminants may be used.

HEARING CONSERVATION

If you work in a high noise area, preventing hearing loss is of utmost importance. Whenever possible, attempts should be made to control noise levels through engineering controls or operational changes before resorting to hearing protection. Equipment that is operating more loudly than usual may just need maintenance. Also, installing noise attenuating devices in an inherently noisy environment may alleviate noise levels. If, however, the noise level cannot be controlled sufficiently, hearing protection should be employed.

If you suspect that your laboratory environment exceeds acceptable noise levels, contact E,H&S for help. E,H&S has instruments for measuring decibel levels and can make recommendations on possible ways to reduce the noise level or on types of hearing protection that would be appropriate for the situation.

EYE AND FACE PROTECTION

Employees must wear protection if hazards exist that could cause eye or face injury. Eye and face protection should be used in conjunction with equipment guards, engineering controls, and safe practices.

NOTE: Unless it is documented that there is no potential for eye injury to occur, safety glasses are required in laboratories. Chemical splash goggles should be worn when handling chemical materials.
Always wear adequate eye and face protection when performing tasks such as grinding, buffing, welding, chipping, cutting, pouring chemicals or pipetting. Safety glasses or goggles should be worn in case of impact hazard. Chemical splash goggles provide the most effective eye protection against chemical splashes as well as protection against impact.

Follow the information below regarding eye protection:

a. If you wear prescription glasses, goggles or other safety protection should be worn over the glasses.
b. Safety glasses with side-shields provide protection to eyes and are four times as resistant as prescription glasses to impact injuries.
c. Goggles protect against impacts, sparks, chemical splashes, dust, etc., but not all goggles provide the same type of protection. There are specific goggles for:
 i. Wood-working or other impact hazards
 ii. Chemical splash hazards
 iii. Laser hazards
 iv. UV hazards
 v. Welding hazards
d. A face shield is designed to protect the face from some splashes or projectiles, but does not eliminate exposure to vapors.

NOTE: Goggles or safety glasses with side shields must be worn under a face shield.

FOOT PROTECTION

To protect feet and legs from falling objects, moving machinery, sharp objects, hot materials, chemicals, or slippery surfaces, employees should wear closed-toed shoes, boots, foot-guards, leggings, or safety shoes as appropriate. Safety shoes are designed to protect people from the most common causes of foot injuries — impact, designed to protect people from the most common causes of foot injuries — impact, compression, and puncture. Foot protection is particularly important in laboratory work.

IMPORTANT: Do not wear sandals, open-toed shoes, open-backed shoes, or Crocs in laboratories, shops, or other potentially hazardous areas.

Chemically resistant shoes may be necessary when working with certain materials, such as corrosives. Special foot protection is also available for protection against static electricity, sparks, live electricity, and slipping. For more information on specialty foot protection, consult the TAMU-CC Safety Manual.
HEAD PROTECTION

Accidents that cause head injuries are difficult to anticipate or control. With some exceptions, head protection is generally not needed in a laboratory environment. However, if hazards exist in the laboratory that could cause head injury, employees should try to eliminate the hazards, but they should also wear head protection. Refer to the TAMU-CC Safety Manual for more information on head protection.

RESPIRATORY PROTECTION PROGRAM

TAMU-CC uses engineering, administrative, and procedural controls to protect people from dangerous atmospheres, including harmful mists, smoke, vapors, oxygen deficient environments, and animal dander. When these controls cannot provide adequate protection, respiratory protection is necessary.

People who use respiratory protection must be physically capable of using and wearing the equipment. In some cases, a physician must determine if an employee is healthy enough to use a respirator. In addition, all people required to wear respirators must be formally trained and instructed in proper equipment usage.

Choosing the right respirator for the job is equally important to knowing how to use it. There are many types of respirators and each type protects against different hazards. E,H&S will help individuals select the best respirator for their needs.

IMPORTANT: Respirators are available in different sizes. Always fit test a respirator to select the correct size.
Environmental, Health & Safety can provide training and fit testing for personnel who need respiratory protection.
1.0 GENERAL OFFICE SAFETY

1.1 A large percentage of workplace accidents and injuries occur in office buildings. Like the shop or laboratory, the office requires a few preventive measures to ensure a safe and healthy environment. Common causes of office accidents include the following:

- Slipping, tripping, and falling hazards
- Burning, cutting, and pinching hazards
- Improper lifting and handling techniques
- Unobservant and inattentive employees
- Improper office layout and arrangement
- Dangerous electrical wiring
- Exposure to toxic substances
- Horseplay

1.2 **REMEMBER:** The office building is not a sterile working environment; common workplace hazards can be dangerous when you ignore them.

1.3 Refer to other chapters in this manual, such as Electrical Safety, General Safety, Fire Safety, and others for more information on workplace safety. Always use common sense when safety is a concern.

2.0 GOOD HOUSEKEEPING PRACTICES

2.1 Many office accidents are caused by poor housekeeping practices. By keeping the office floor both neat and clean, you can eliminate most slipping, tripping, and falling hazards. Other good housekeeping practices include the following:

- Office lighting should be adequate and available. Replace burned out light bulbs, and have additional lighting installed, as necessary.
- Electrical cords and phone cords should not cross walkways or otherwise pose a tripping hazard. If you cannot move a cord, have a new outlet installed or secure the cord to the floor with cord covering strips. Do not tape cords down as a long-term solution or run them underneath carpet.
- Report or repair tripping hazards such as defective tiles, boards, or carpet immediately.
- Clean spills and pick up fallen debris immediately. Even a loose pencil or paper clip could cause a serious falling injury.
- Keep office equipment, facilities, and machines in good condition.
Store items in an approved storage space. Take care to not stack boxes too high or too tight. Ensure that boxes are clearly labeled with their contents.

- Arrange office furnishings in a manner that provides unobstructed areas for movement.
- Keep stairs, steps, flooring, and carpeting well maintained.
- Glass doors should have some type of marking to keep people from walking through them.
- Clearly mark any difference in floor level that could cause an accident.
- Do not place wastebaskets or other objects in walkways.

3.0 HAZARDOUS OBJECTS AND MATERIALS

3.1 In addition, hazardous chemicals and materials should not be stored in the general office. Hazardous materials include, but are not limited to, the following:

- Carcinogens
- Combustibles
- Flammables
- Gas cylinders
- Irritants
- Oxidizers
- Reactives

4.0 PREVENTING CUTS AND PUNCTURES

4.1 Cuts and punctures happen when people use everyday office supplies without exercising care. Follow these guidelines to help reduce the chance for cuts and punctures:

- When sealing envelopes, use a liquid dispenser, not your tongue.
- Be careful when using kitchen knives, scissors, staplers, letter openers, paper cutters and box openers. Any of these items could cause a painful injury.
- Avoid picking up broken glass with your bare hands
- Wear gloves and use a broom and a dust pan.
- Place used blades or broken glass in a rigid container, such as a box, before disposing in a wastebasket.
5.0 PREVENTING MACHINE ACCIDENTS

5.1 Only use machines that you know how to operate. Never attempt to operate an unfamiliar machine without reading the machine instructions or receiving directions from a qualified employee. In addition, follow these guidelines to ensure machine safety:

- Secure machines that tend to move during operation.
- Do not place machines near the edge of a table or desk.
- Ensure that machines with moving parts are guarded to prevent accidents. Do not remove these guards.
- Unplug defective machines and have them repaired immediately.
- Do not use any machine that smokes, sparks, shocks, or appears defective in any way.
- Close hand-operated paper cutters after each use and activate the guard.
- Take care when working with copy machines. If you have to open the machine for maintenance, repair, or troubleshooting, remember that some parts may be hot. Always follow the manufacturer's instructions for troubleshooting.
- Unplug paper shredders before conducting maintenance, repair, or troubleshooting.

5.2 Some items can be very dangerous when worn around machinery with moving parts. Avoid wearing the following items around machines within unguarded moving parts:

- Loose belts
- Jewelry
- Long, loose hair
- Long, loose sleeves or pants
- Scarves
- Ties

6.0 PREVENTING SLIPS, TRIPS AND FALLS

Same level slips, trips and falls are occupational hazards that can be found in almost every type of work setting. Preventing slips, trips, and falls requires a combination of hazard identification and correction, as well as personal responsibility. Common injuries from slips, trips, and falls include sprains, strains, bruises, contusions, fractures, abrasions, and lacerations with the injuries occurring at the knee, ankle, foot, wrist, elbow, back, shoulder, and head. As outlined in the General Safety chapter of this manual, the easiest way to avoid slips and falls is to pay attention to your surroundings and to avoid running or rushing.
6.1 Slips occur when there is too little friction or traction between your feet and the walking surface. The most common causes of slips are wet surfaces, ice or other weather hazards, spills, and poor tread on footwear. Preventive measures include:

- Shorten your stride, walk with feet pointed out slightly, and make wider turns on wet surface.
- Clean spills up immediately. If you are unfamiliar with the contents of the spill, contact EHS at 5555.
- Weather hazards:
 - Walk more slowly so you can react to traction changes
 - Wear slip resistant shoes or boots, and dry off shoes as soon as practical after entering a building (wet shoes on dry floors are as dangerous as dry shoes on wet floors).
- Wear sunglasses on sunny days so you can see slippery areas more easily.
- Poor tread on footwear, or generally poor traction:
 - Wear slip resistant footwear, apply abrasive strips to smooth walking surfaces and post warnings.

6.2 Trips commonly occur when your foot strikes an object and your momentum throws you off balance. To minimize the potential for this type of injury:

- When carrying packages do not allow them to obstruct your view.
- If glasses fog due to atmospheric changes, clear them immediately.
- Use only proven walkways.
- Close desk and file drawers when not in use.
- Report burned out or missing lights.
- Be aware of elevator threshold positions.
- Report any uneven or broken pavement, sidewalks, or handrails to EHS at ext. 5555 or 361-825-5555.
- Text and email can wait. Put your phone in your pocket while on the move.
- Clearly mark any difference in floor level that could cause an accident.

6.3 Falls usually take place from one level to another. Preventive measures include:

- Arrange office furnishings in a manner that provides unobstructed areas of movement.
- Keep stairs, steps, flooring, and carpeting well maintained.
- NEVER stand on a chair to reach a high object. Always use a ladder.
- When using ladders, select the proper type and size, and use it properly
- Walk up and down stairs, and never jump from the last step.
- Use handrails.
- Use the elevator while carrying objects requiring both hands.
- Report any unsafe conditions to EHS at ext. 5555 or 361-825-5555.

There is one more precautionary tip that applies in all these cases, and that is to **PAY ATTENTION TO WHAT YOU ARE DOING.** This is among the most common causes of injuries, and is the easiest to correct. The best walking surfaces and ideal weather conditions won’t be of any help if you are not watching where you are going. **Refrain from texting or talking on your cell phone.**

7.0 PREVENTING STRESS

7.1 To reduce stress and prevent fatigue, it is important to take mini-breaks (not many breaks) throughout the day. If possible, change tasks at least once every two hours. Stretch your arms, neck, and legs often if you do the same type of work for long periods of time. Tip for healthy eyes use the 20-20-20 rule. Every 20 minutes look away from your monitor, and stare at something 20 feet away for 20 seconds. For a quick pick-me-up, breathe deeply several times by inhaling through your nose and exhaling through your mouth. In addition, always try to eat your lunch somewhere other than your desk.

7.2 Other examples of stress-relieving exercises that can be done at your desk include the following:

- **Head and Neck Stretch:** Slowly turn your head to the left, and hold it for three seconds. Slowly turn your head to the right, and hold it for three seconds. Drop your chin gently towards your chest, and then tilt it back as far as you can. Repeat these steps five to ten times.
- **Shoulder Roll:** Roll your shoulders forward and then backward using a circular motion. Repeat in each direction five to ten times.
- **Upper Back Stretch:** Grasp one arm below the elbow and pull gently towards the other shoulder. Hold this position for five seconds and then repeat with the other arm.
- **Wrist Wave:** With your arms extended in front of you, raise and lower your hands several times.
- **Finger Stretch:** Make fists with your hands and hold tight for one second, then spread your fingers wide for five seconds

8.0 LIFTING

Use proper lifting techniques to avoid injury when performing a lift. In general, employees should seek assistance when lifting objects that weigh 50 pounds or more. Use your good judgment to determine if you need assistance, a dolly, back support belt, or other tool to safely lift an object.
8.1 The back supports the weight of the entire upper body. When you lift objects or move heavy loads, your back has to support even more weight. If you exceed your body’s natural limits, your back cannot support both your body and the extra load. The excess, unsupported pressure is transferred to the lower back, where injury is imminent. By using the muscles in your arms and legs and exercising proper lifting techniques, you can move loads safely and protect your back from possible injury.

8.2 Follow these guidelines to help avoid back injuries:

- Avoid moving objects manually. Plan jobs and arrange work areas so that heavy items may be moved mechanically.
- Keep in good physical condition. If you are not used to lifting and vigorous exercise, do not attempt difficult lifting tasks.
- Think before you act. Use proper lifting techniques and lifting aides such as back support belts, dollies, etc. Get help if you need it.
- When lifting heavy objects, follow these steps and refer to the illustration below:

 - Test the object’s weight before handling it. If it seems too heavy or bulky, get assistance.
 - Face the object, place one foot behind the object and one foot along its side.
 - Bend at the knees.
 - Get a firm, balanced grip on the object. Use the palms of your hands, and use gloves if necessary.
 - Keep the object as close to your body as possible. (Pull the load in close before lifting.)
 - Lift by straightening your legs and slightly unbending your back.
 - If the object is too heavy or bulky, get help.

 * Do not twist the back or bend sideways.
 * Do not perform awkward lifts.
 - Do not lift objects at arm’s length.
 - When moving objects, proceed with caution through doors and around corners.

9.0 EQUIPMENT AND FURNITURE SAFETY

9.1 As mentioned earlier, common office machines, such as the following, require special safety consideration: copiers, microwaves, adding machines, typewriters, and computers. If there is ever any question of how to properly use a piece of equipment or furniture, always refer to the manufacturer’s guidelines for further instruction. If you notice a piece of equipment is
damaged or working improperly, un-plug the machine, do not use the damaged equipment, and refer to manufacturer’s guidelines. All equipment should only be repaired by a certified repair person.

- Other office equipment that requires safety consideration includes furniture such as file cabinets and shelves, desks, and chairs.

9.2 File Cabinets and Shelves
- Because file cabinets and shelves tend to support heavy loads, treat them with special care.
- Follow these safety guidelines for file cabinets:
 - Secure file cabinets that are not weighted at the bottom.
 - Either attach them to the floor or to the wall.
 - Ensure that file cabinet drawers cannot easily be pulled clear of the cabinet.
 - Do not block ventilation grates with file cabinets.
 - Open only one drawer at a time to keep the cabinet from toppling.
 - Close drawers when they are not in use.
 - Do not place heavy objects on top of cabinets. Be aware that anything on top of a cabinet may fall off if a drawer is opened suddenly.
 - Close drawers slowly using the handle to avoid pinched fingers.
 - Keep the bottom drawer full. This will help stabilize the entire cabinet.
 - Remove drawers before attempting to move a file cabinet.

- In addition, follow these safety guidelines for office shelves:
 - Secure shelves by attaching them to the floor or wall.
 - Place heavy objects on the bottom shelves. This will keep the entire structure more stable.
 - Ensure that there is at least 18 inches between the top shelf items and the ceiling. This space will allow ceiling sprinklers (if present) to function properly if a fire occurs.
 - Do not block ventilation grates with shelves.
 - Never climb on shelves (even lower shelves). Use an approved ladder.

9.3 Desks
- Follow these safety guidelines for office desks:
- Keep desks in good condition (i.e., free from sharp edges, nails, etc.).
- Ensure that desks do not block exits or passageways.
- Ensure that glass-top desks do not have sharp edges.
- Ensure that desks with spring-loaded tables function properly. The table should not spring forth with enough force to cause an injury.
- Do not climb on desks. Use an approved ladder.
- Keep desk drawers closed when not in use.
- Repair or report any desk damage that could be hazardous.

9.4 Chairs
- Safety guidelines for office chairs include the following:
 - Do not lean back in office chairs, particularly swivel chairs with rollers.
 - Do not climb on any office chair. Use an approved ladder.
 - Office desk chairs should have adjustable back supports and seat height. Make sure that your chair’s back support position and seat height are comfortable.
 - Take care when sitting in a chair with rollers. Make sure it does not roll out from under you when you sit down.
 - Repair or report any chair damage that could be hazardous.
 - Do not roll chairs over electrical cords.
 - Chairs on casters should have five legs for stability.

9.5 Ladders and Stepstools
- Always use an approved ladder or stool to reach any item above your extended arm height. Never use a makeshift device, such as a chair, desktop, file cabinet, bookshelf, or box, as a substitute for a ladder.

- Follow these guidelines when using ladders:
 - Do not load a ladder above its intended weight capacity.
 - Place ladders on slip-free surfaces even. Secure the ladder if a slip-free surface is not available.
 - Avoid placing ladders in walkways. Secure a ladder if its location could cause an accident.
 - Keep areas around ladders clean and free of debris.
 - Do not use a ladder in front of a door unless the door is
locked and barricaded.
- Refer to the Shop Safety chapter in this manual for more information on ladder safety.

10.0 WORK STATION ARRANGEMENT

10.1 With the extensive use of computers and other automated desk devices in the workplace, employees must take special care to ensure proper work station arrangement. For the purpose of this manual, a work station consists of the equipment and furniture associated with a typical desk job (i.e., desk, chair, and computer components).

10.2 Cumulative trauma disorders, such as carpal tunnel syndrome may result from the stress of repetitive motion. Therefore, it is very important to arrange your work station properly and to take breaks frequently.

10.3 Ergonomic surveys/reviews of the work station arrangement can be requested from Environmental, Health and Safety.

11.0 OPERATOR'S POSITION

11.1 Your seating position at work is important to your comfort and safety. To reduce the painful effects of repetitive motion, follow these guidelines when working with computers or typewriters:

- Always sit up straight. Make sure your chair is adjusted to provide adequate support to your back.
- Place your feet flat on the floor or on a footrest. Lower legs should be approximately vertical, and thighs should be approximately horizontal. The majority of your weight should be on the buttocks.
- Ensure that there is at least 1 inch of clearance between the top of your thighs and the bottom of the desk or table.
- Keep your wrists in a natural position. They should not rest on the edge of the desk.
- Keep the front edge of your chair approximately 4 inches behind your knees.
12.0 EQUIPMENT ARRANGEMENT

12.1 By properly arranging your equipment, you can also help reduce the harmful effects of repetitive motion. Follow these guidelines for arranging office equipment:

- **Lighting:** Lighting around computer work stations should illuminate the work area without obscuring the monitor or causing glare. Position computer screens, draperies, blinds, and pictures to reduce glare during work hours (e.g., place the monitor at a right angle to the window).

- **Computer monitor images should be clear and well-defined.** Adjust the screen's brightness, contrast and display size to meet your needs. If a screen flickers or jumps, have it repaired or replaced. Place the monitor away from your face. The center of the monitor should be approximately 15 to 25 degrees below your line of vision.

- **Keyboards:** Position computer keyboards so that the angle between the forearm and upper arm is between 80 and 120 degrees. Place the keyboard in an area that is accessible and comfortable.

- **Wrist Support:** Use wrist supports made of padded material. The support should allow you to type without bending your wrists.

- **Document Holders:** Keep documents at approximately the same height and distance from your face as the computer screen.

- **Telephones:** Neck tension is a common problem caused by holding the telephone between the head and neck. Use a headset or speakerphone if you use the telephone for extended periods of time.

12.2 Contact Environmental, Health and Safety if you have any questions regarding your work station arrangement. If you develop pain that you believe arises from work you do at the office, contact your supervisor.
XXI. PERSONAL PROTECTIVE EQUIPMENT

1.0 PERSONAL PROTECTIVE EQUIPMENT DEFINED

1.1 Personal Protective Equipment (PPE) includes all clothing and work accessories designed to protect employees from workplace hazards. Protective equipment should not replace engineering, administrative, or procedural controls for safety. It should be used in conjunction with these controls. Employees must wear protective equipment as required and when instructed by a supervisor.

IMPORTANT: Personal protective equipment that is used to prevent exposure or contamination should always be removed before coming in contact with other individuals or going in or near elevators, break rooms, classrooms, bathrooms, etc. Do not launder personal protective equipment at home.

2.0 APPROPRIATE APPAREL

2.1 Dress in a manner that does not impair safety. Loose clothing, long hair, dangle jewelry, and sandals may be dangerous around moving equipment.

2.2 Always wear clothing that is appropriate for your job. Refer to the chapters on Personal Protective Equipment and Office Safety for more information.

3.0 ARM AND HAND PROTECTION

3.1 Arms and hands are vulnerable to cuts, abrasions, temperature extremes, burns, bruises, electrical shock, chemical spills, and amputation. The following forms of hand protection are available for employees:

- Disposable exam gloves
- Rubber gloves
- Nitrile gloves
- Neoprene gloves
- Leather gloves
- Non-asbestos heat-resistant gloves
- Metal-mesh gloves for meat cutters
- Cotton gloves
- Electrical V-rated gloves and leather glove protectors
3.2 Always wear the appropriate hand and arm protection. For arm protection, wear a long-sleeved shirt, a laboratory coat, chemical-resistant sleeves, or gauntlet-length gloves.

3.3 Follow these guidelines to ensure arm and hand safety:

- Inspect and test new gloves for defects.
- Always wash your hands before and after using gloves.
- Do not wear loose fitting gloves near moving machinery; the gloves may become caught.
- Do not wear gloves with metal parts near electrical equipment.

IMPORTANT: Gloves are easily contaminated. Avoid touching surfaces such as telephones, door knobs, etc. when wearing gloves.

4.0 BODY PROTECTION

4.1 Hazards that threaten the torso tend to threaten the entire body. A variety of protective clothing, including laboratory coats, long pants, rubber aprons, coveralls, and disposable body suits are available for specific work conditions.

- Rubber, neoprene, and plastic clothing protect employees from most acids and chemical splashes.
- Laboratory coats and coveralls protect employees and everyday clothing from contamination.
- Welding aprons provide protection from sparks.

4.2 Do not launder contaminated chemically, biologically, or radiologically protective clothing at home or in any facilities outside of the university.

5.0 EAR AND HEARING PROTECTION

5.1 If you work in a high noise area, wear hearing protection. Most hearing protection devices have an assigned rating that indicates the amount of protection provided. Depending on your level of exposure, you may choose from the following devices:

- Disposable earplugs
- Reusable earplugs
- Headband plugs
- Sealed earmuffs

5.2 Earplugs may be better in hot, humid, or confined work areas. They may also be better for employees who wear other PPE, such as safety glasses or hats.
Earmuffs, on the other hand, may be better for employees who move in and out of noisy areas, because the muffs are easier to remove. Before resorting to hearing protection, attempt to control noise levels through engineering or operational changes.

5.3 To avoid contamination, follow these guidelines when using earplugs:

- Wash your hands before inserting earplugs.
- Replace disposable earplugs after each use.
- Dispose of reusable earplugs after each use.

5.4 Refer to the Hearing Conservation Program, page.

6.0 EYE AND FACE PROTECTION

6.1 Employees must wear protection if hazards exist that could cause eye or face injury. Eye and face protection should be used in conjunction with equipment guards, engineering controls, and safe practices. Visitors to campus who are exposed to eye-hazardous areas shall be provided with protective eyewear, by the University on a temporary basis.

NOTE: Safety glasses are required in laboratories. Chemical goggles should be worn when handling chemical materials.

6.2 Always wear adequate eye and face protection when performing tasks such as grinding, buffing, welding, chipping, cutting, or pouring chemicals. Safety glasses with side shields provide protection against impact, but chemical safety goggles provide protection against impact, splashes, and hazardous atmospheres.

6.3 Guidance information regarding eye protection:

- If you wear prescription glasses, wear goggles or other safety protection over the glasses.
- Safety glasses with side-shields provide primary protection to eyes and are four times as resistant as prescription glasses to impact injuries.
- Goggles protect against impacts, sparks, dust, and irritating mist. Wear chemical splash goggles, not just safety glasses, when working with chemicals.
- A welding helmet protects from flash burn due to welding, soldering, or brazing, but does not provide primary eye protection; safety glasses or goggles should be worn with the helmet.
- A face shield is designed to protect the face from some splashes or projectiles, but does not eliminate exposure to vapors. A face shield should
be worn with goggles or safety glasses, when exposed to or handling caustics acids or cryogenic liquids.

- To reduce eyestrain from glare and outdoor sun exposure use safety glasses with UV protection to minimize the ultraviolet light exposure

- Safety eye wear or face wear shall meet the American National Standards Institute (ANSI-Z87) Standard. Personal “street wear” which has the new FDA approved impact-resistant lenses cannot be substituted for industrial type equipment. The latter offers a far greater degree of protection.

- To protect against radiant energy when welding, brazing or cutting, the use of the welding type filter lenses shall conform to the following shade specifications.

 - Arc weld over 400 amps Shade 14
 - Arc weld 200-400 amps Shade 12
 - Arc weld 75-200 amps Shade 10
 - Arc weld 30-75 amps Shade 8
 - Heavy gas weld and cutting Shade 8
 - Arc weld up to, 30 amps Shade 6
 - Medium gas weld and cutting Shade 6
 - Light gas weld, cutting and brazing Shade 5

- Full face shields, chemical splash goggles or hoods with shields, as appropriate, shall be worn when exposed to or handling caustics, acids, or cryogenic liquids.

7.0 FOOT PROTECTION

7.1

To protect feet and legs from falling objects, moving machinery, sharp objects, hot materials, chemicals, or slippery surfaces, employees should wear closed-toed shoes, boots, foot-guards, leggings, or safety shoes as appropriate. Safety shoes are designed to protect people from the most common causes of foot injuries — impact, compression, and puncture. Special foot protection is also available for protection against static electricity, sparks, live electricity, corrosive materials, and slipping. Check with E,H&S if your job description qualifies you to participate in the safety shoe program.

NOTE: Foot protection is particularly important in laboratory, agricultural, construction and custodial work.

IMPORTANT: Do not wear sandals, crocs, or open-toed shoes in laboratories, shops, food prep, food serving, or other potentially hazardous areas.
8.0 HEAD PROTECTION

8.1 **Accidents** that cause head injuries are difficult to anticipate or control. If hazards exist that could cause head injury, employees should try to eliminate the hazards, but they should also wear head protection.

8.2 **Safety hats** protect the head from impact, penetration, and electrical shock. Head protection is necessary if you work where there is a risk of injury from moving, falling, or flying objects or if you work near high-voltage equipment.

8.3 **Hard hats** should be water resistant, flame resistant, and adjustable. Wear one of the following hard hats as appropriate for your work situation:

- Class G - General service, limited voltage (2,200 Volts) protection
- Class E - Utility service, high-voltage (20,000 Volts) protection
- Class C - Special service, no voltage protection

8.4 **Follow these guidelines for head safety:**

- Check the shell and suspension of your headwear for damage before each use. Look for cracks, dents, gouges, chalky appearance, and torn or broken suspension threads. Discard damaged hats or replace broken parts with replacements from the original manufacturer.

- Discard any hat that has been struck or dropped from a great height, even if there is no apparent damage.

- Do not wear a hard hat backwards, unless this is necessary to accommodate other protective equipment (e.g., welders face shield).

- Do not paint the plastic shell of a hard hat or alter it in any way.

9.0 RESPIRATORY PROTECTION PROGRAM

9.1 TAMU-CC uses engineering, administrative, and procedural controls to protect people from dangerous atmospheres, including harmful mists, smoke, vapors, and oxygen-deficient atmospheres. When these controls cannot provide adequate protection against harmful atmospheres, respiratory protection is necessary.

9.2 The Environmental Health & Safety Department can provide training and fit testing for personnel who need respiratory protection.

9.4 Usage requirements

- People who use respiratory protection must be physically capable of using and wearing the equipment. A physician or other licensed health care professional must determine if an employee is healthy enough to use a respirator. In addition, all people required to wear respirators must be formally trained and instructed in proper equipment usage. This training should include instruction on common respiratory hazards and symptoms of exposure.

- Before wearing a respirator employees must be fit tested to ensure their respirator protection equipment is the proper size and fits appropriately. Fit testing must be done annually or more frequently based on substantial weight gain/loss or facial surgery. Fit testing is outsourced.

NOTE: Only use respirators that are approved by the National Institute for Occupational Safety and Health (NIOSH)

9.5 Selecting a respirator

- E,H&S will help departments to select the respirator. When selecting a respirator, consider the following factors:
 - Type of hazards
 - Identity and concentration of the contaminant
 - Time constraints
 - Activity of the person wearing the respirator
 - Degree of protection provided by each type of respirator

IMPORTANT: Respirators are available in different sizes. Always fit test a respirator to select the correct size.

9.6 Using respirators safely

- Your respirator is necessary to prevent the inhalation of particulates, gases, vapors, aerosols, or other contaminants. Be sure you have notified E,H&S of all hazardous chemicals or materials you will be working with to ensure you have been provided the best possible respiratory protection.
- It is important to remember the following:
 - Only use the respirator you were approved to wear and that has been properly fit tested.
 - You must be familiar with the respirator, its use and limitations, and how to properly maintain and care for your respirator.
 - You may not have facial hair that interferes with the seal of a tight fitting respirator. If you were fit tested without facial hair or with a minimal amount of facial hair, you must not wear your respirator with additional hair growth.
- You should contact E,H&S to be fit tested again if you have facial or dental surgery, significant weight gain or loss, facial scarring, or anything else that might affect the fit and seal of your respirator.
▪ You should be fit tested annually.

9.7 Safety Tips
▪ Inspect respirator before and after each use to ensure that all parts are present or attached and are functioning properly.
▪ Rubber and plastic parts should be checked for signs of wear and tear (cracking, stiffness, etc.). If you identify any worn or weak parts, do not use the respirator.
▪ Perform a positive pressure and negative pressure seal check every time you put on the respirator.

NOTE: Positive pressure check: Cover the exhalation valve of the respirator with the palm of your hand. Exhale gently for about 10 seconds to build up a slight pressure. If air leaks out, the respirator is not sealing properly and should be repositioned before entering the hazardous area.

NOTE: Negative pressure check: Cover the filter or cartridge openings of the respirator with the palms of your hands. Inhale gently and hold your breath for about 10 seconds. You should notice a slight suction. If the face piece does not collapse inward or you feel an air leak, the respirator is not sealing properly and should be repositioned before entering the hazardous area.

9.8 Leave the respiratory protection area if any of the following occur:
▪ If your respirator is damaged.
▪ If your breathing becomes difficult.
▪ If you become dizzy.
▪ If you detect a respirator failure (smell something you did not notice before, eyes begin to water, etc.).
▪ If you feel your seal has been broken (air getting in or out around your face piece).

DO NOT REMOVE OR REPOSITION YOUR MASK UNTIL YOU HAVE LEFT THE HAZARD AREA.

9.9 Storage, Cleaning, and Care
▪ Store respirator in a clean, cool area (away from dust, sunlight, extreme temperatures, moisture, and chemicals). A zip lock bag works well.
▪ Do not hang respirator by headband.
▪ The respirator should be cleaned regularly with respirator wipes or a detergent solution. All parts should air dry or be wiped dry with a lint free cloth.
▪ Clean and disinfect the respirator after each use.
▪ Do not share your respirator.
1.0 RADIOLOGICAL SAFETY AT TAMUCC

1.1 The Environmental, Health and Safety (EHS) is responsible for administering Texas A&M University-Corpus Christi (TAMU-CC) radiological safety programs. All departments or units that acquire or use sources of radiation (ionizing or non-ionizing) must comply with established TAMU-CC procedures. The rules, responsibilities, and procedures which comprise the Texas A&M University-Corpus Christi radiation safety program also apply to those Texas A&M University System personnel and operations authorized in a license or by registration issued to Texas A&M University-Corpus Christi and administered by TAMU-CC EHS. Currently TAMU-CC does not have research programs requiring a license, only registrations.

1.2 For specifics refer to the following procedure manuals:

Part One: Radiological Safety Program Manual
Laser Safety Program Manual

2.0 MAGNETIC RESONANCE IMAGING

2.1 The information in this section pertains only to large magnets at TAMU-CC such as those used for magnetic resonance imaging.

2.2 Because the magnetic flux lines (or pull) from the main magnetic field can extend well beyond the actual magnet, the greatest hazard associated with large magnets is the *missile effect*. Ferromagnetic objects such as pens, scissors, screwdrivers, oxygen cylinders, and other metallic devices can be pulled into the magnet with enough force to cause a serious injury or accident. In addition, magnetic fields may also disrupt pacemakers or cause injury to individuals with surgically implanted metal pins or plates.

2.3 **IMPORTANT:** *To protect bystanders and prevent the accidental introduction of ferromagnetic materials within the proximity of a magnet, establish a security zone around any large magnet.*

3.0 RADIOFREQUENCY RADIATION

Refer to Standard Administrative Procedure, 51.04.99.M0.01, Antenna Site Lease Procedures
XXIII. SAFETY PROCEDURES FOR THE TRADES

1.0 GENERAL SAFETY RULES

1.1 General

- University employees or students shall not turn on, use, repair, or operate any machine, tool, vehicle, crane, electricity, gas, steam, air, acid, caustic or other dangerous material or equipment unless properly trained and authorized by a supervisor.
- Safety guards and devices furnished by the University or department shall be used.
- Approved personnel protective equipment shall be worn when the exposure indicates the need for it, i.e., head and ear protection, face and eye protection, respiratory equipment, fall harness, protective footwear, etc. (See “Personnel Protective Equipment, Section XXXIII” for more details).
- Only a tool, equipment, machinery, etc. that is properly maintained and adjusted may be used.
- University-provided tools may not be modified.
- Floors must be kept free of materials or substances that might constitute a tripping or slipping hazard. Employees responsible for any such material or substance spilled shall clean it up immediately.
- Horseplay, running and practical jokes are prohibited because of the potential to cause injuries.

2.0 WASHING WITH SOLVENTS

Flammable liquids shall not be used to clean floors, workbenches, or other large surface areas.

3.0 PERSONAL PROTECTIVE EQUIPMENT- Refer to Section XXIII

3.1 Fall Protection- Refer to Section X- Construction Safety 8.0
Refer to OSHA 29 CFR 1926.501

4.0 ELECTRICAL SAFETY- Refer to Section XI

5.0 GROUNDS SAFETY

5.1 Pest Control
- With few exceptions, pesticides are potentially toxic to human beings and in some cases are flammable or explosive. All persons who mix,
store or apply pesticides should have full knowledge of the
characteristics, effects, and precautions applicable to the material being
used.
 ▪ University employees engaged in pesticide application work are to be
licensed by the State of Texas or under the supervision of a licensed
person. Products sold over the counter for immediate use from the
container may be used with care by any licensed personnel.
 ▪ Private contractors who apply pesticides on campus must also be licensed
by the State of Texas.
 ▪ Pesticides and other chemicals used in pest control must be used in
accordance with instructions on the container label.
 ▪ Do not spray liquid pesticides on electrical outlets or equipment, use dust
or powder.
 ▪ Chemicals consisting of high vapor toxicity must not be applied in
large quantities in unventilated areas.
 ▪ Surplus pesticides must be disposed of in a manner, which will not
permit harm to people, animals or the environment. Contact
Environmental, Health & Safety for proper disposal procedures.
 ▪ The spray equipment tanks should be equipped with a leak-proof latch.
The mixing system should be so designed that it eliminates spills during
transfer and mixing.
 ▪ Do not apply pesticides in laboratories, office areas or any occupied
areas without authorization from the individual responsible for that area.
 ▪ Persons requesting pesticide application must contact/notify all
personnel in the affected area.
 ▪ All necessary safety equipment must be available during application of
pesticides, such as respirators, gloves, face shields or goggles and aprons
if the job warrants their use.
 ▪ Facilities Services has posted notification signs at the entrances of all
buildings indicating that pesticide will be applied each Friday. Every
campus building is treated at least once a month, if not every Friday.

5.2 Tree Trimming
 ▪ Wear chainsaw chaps, hard hat with attached face shield, gloves, and
steel toed footwear.
 ▪ Employees engaged in pruning, trimming, removing or clearing trees
shall be required to consider all overhead and underground electrical
power conductors with potentially fatal voltages.
 ▪ Ensure that a thorough inspection is made before working around any
tree, to determine whether an electrical power conductor passes
through the tree, or passes within reaching distance of an employee
working in the trees. If any of these conditions exist either directly or
indirectly, an electrical hazard shall be considered to exist unless the
hazard can be removed by de-energizing the lines, or installing protective
equipment.
 ▪ Only qualified line clearance tree trimmers familiar with the special
techniques and hazards involved in line clearance, shall be permitted to
perform the work if it is found that an electrical hazard exists.

- During all tree working operations aloft where an electrical hazard of more than 600 volts exists, there shall be a second employee qualified in line clearance tree trimming within normal voice communication.
- Do not climb in a tree to prune branches or perform other duties.

5.3 Excavation- refer to Section X, Construction Safety- Trenching

5.4 Power Mowers
- General Requirements
 - American National Standards Institute (ANSI)/OPEI Outdoor Power Equipment Institute- Walk-Behind Mowers and Ride-On Machines with Mowers- Safety Specifications, covers reel and rotary walk-behind and reel and rotary ride-on power lawn mowers, ride-on power lawn tractors with mower attachments, ride-on-power lawn and garden tractors with mower attachments, and lever steer ride-on mowers. These safety requirements help ensure uniform operator environments.
 - ANSI/OPEI B175.3-2013 guide safety requirements for Grass Trimmers and Brush cutters and Walk-Behind Powered Rotary Tillers and Hand Supported Cultivators, respectively, to establish minimum manufacturer requirements to reduce the risk of injury associated with the use of these useful but often dangerous pieces of equipment.
 - Power mowers shall be maintained in safe operating condition in accordance with the owner's manual.
 - An indicator of blade rotation shall be provided on mowers that operate quietly.
 - The controls used for stopping, starting, speed control, and attachment engagement shall be clearly identified by a durable label.
 - The mower blade shall be enclosed except on the bottom, and the enclosure shall extend 1/8-inch minimum below the lowest cutting point of the blade.
 - The discharge opening(s) shall be so placed or guarded that grass or debris will not discharge directly into the operator zone. Do not chain up safety guards.
 - The word “CAUTION” OR “DANGER” shall be placed on the mower at or near discharge opening.
 - The blade(s) shall stop rotating within seven seconds after either
declutching or shutting off drive power.

- Gasoline mowers shall not be parked, stored or repaired in any public use building, office, exit way or location that would create a fire or life hazard.

- Area to be cut should be examined for loose objects such as rocks, broken glass, nails, wire, string, etc. Serious injury can result from objects thrown by rotating blade.

- The engine will be cut off when filling the gas tank. No smoking when filling. Avoid slopes that are too steep for machines, whether a push mower or riding mower.

5.5 Walk-Behind Mowers
- The mower handle shall be fastened to the mower so as to prevent unintentional uncoupling with in operation.
- A mower with a rope starter shall have a labeled, designated area for stabilizing the mower when starting the engine.
- A shutoff control device shall be provided to stop operation of the engine. This device shall require manual and intentional activation in order to restart the engine.

5.6 Riding Rotary Mowers
- A disconnect device shall be provided between the engine (motor) or power source and the blade(s).
- A means shall be provided to prevent the starting of the engine when the wheel drive control is in the engaged position. Such means shall not be required on units equipped with dead-man controls.
- A slip-resistant surface or other means shall be provided to minimize the possibility of an operator’s foot slipping off the foot support or platform.
- A brake pedal shall be provided. It shall be foot-actuated, and the direction of motion shall be forward or downward, or both, for stopping.
- Towed rotary mower attachments shall have no front opening in the blade enclosure.

5.7 Personal Safety- Trimmers and Edgers
- Wear safety spectacles, googles, or face shields which meet the ANSI Z87.1-2015 standard for high-impact resistance.
- Hearing protection should be worn. It should be properly fitted.
- Dress appropriately. Wear steel-toed shoes or boots or heavy leather footwear. Long sleeve shirts and long pants should be work to help to protect the skin from flying objects and the weather.
- Dress with reflective vest when working in locations exposed to vehicle traffic.
▪ Refuel trimmer before starting operation or after work breaks to reduce the possibility of fires from a hot motor. Fuel should only be stored in and dispensed from approved safety cans.
▪ Maintain a safe distance from all bystanders, especially children.
▪ Do not operate this until when you are tired, ill, or under the influence of alcohol, drugs or medication.
▪ Do not swing the unit with such force that you are in danger of losing your balance.
▪ Never start or run the engine inside a closed room or building. Breathing exhaust fumes can kill.
▪ Keep handles free of oil and fuel.

5.8 Cutting Safety
▪ Inspect the area to be cut before each use. Wear gloves while removing objects (rocks, broken glass, nails, wire, string, etc.) which can be thrown or become entangled in the semiautomatic head.
▪ Always keep the engine on the right-hand side of your body.
▪ Hold the unit firmly with both hands.
▪ Keep firm footing and balance. Do not over-reach.
▪ Keep the semi-automatic head below waist level.
▪ Do not raise the engine above you waist.
▪ Keep all parts of your body away from the semi-automatic head and muffler when engine is running.
▪ Use only for jobs explained in the manual.
▪ Cut at full throttle.
▪ Cut from your right to your left.
▪ Hold the weed trimmer as close to the ground as possible, so as to find a comfortable position before you even turn it on.
▪ Stop for a few minutes if you notice any kind of strain. The strain on your spine and arms will hurt for some days if you over do it.

5.9 Passerby Safety
▪ Always make an effort to walk away from the area where the trimmer or edger is being used.
▪ Where possible alert the operator of the trimmer so that he can stop or change position to prevent flying objects from striking you.
▪ Do not assume that the operator detects your presence...remember the
equipment generates noise and therefore the operator will only know if you are there if he sees you.

- Do not face the trimmer even if you are wearing eye protection.

6.0 STORAGE AND HOUSEKEEPING

6.1 Housekeeping

- Safety starts with housekeeping; a clean, neat and orderly work area is an important reflection of safe work habits and attitudes. Therefore, the following housekeeping rules will apply.

 - Places of employment and study shall be kept clean and orderly and in a sanitary condition. The floor of each area shall be maintained in a clean, and, so far as possible, a dry condition.
 - Material spilled on the floor which could cause an accident must be cleaned up immediately.
 - During the course of work, debris shall be kept reasonably cleared from work areas, and waste shall be disposed of at intervals determined by the rate of the accumulation and the capacity of the container. Always use containers supplied for this purpose.

6.2 General Storage Rules

- Material, whenever stored, shall not create a hazard. It shall be limited in height and shall be piled, stacked, or racked in a manner designed to prevent it from tipping, falling, collapsing, rolling, or spreading. Racks, bins, planks, blocks, sheets, shall be used where necessary to make the piles stable.
- Heavy or awkward items should always be stored near the bottom of shelves or cabinets. Heavy items that fall are a hazard to personnel.
- Do not allow equipment or storage to encroach within 42 inches of electrical panels. These panels contain the emergency switches for equipment and sometimes must be reached quickly.
- Have Facilities Services secure storage shelving, cabinets, and other items, which may accidentally tip over or are subject to movement.
- Storage of combustible equipment or materials shall not be allowed in boiler rooms, mechanical rooms and electrical panel rooms.

6.3 Indoor Storage

- Storage shall not obstruct or adversely affect means of exit.
- State fire codes do not allow the storage of materials, which may generate heat or emit smoke in corridors and halls. For this reason, it is University policy that there be no cabinets, refrigerators, storage materials, or extension of offices or laboratory facilities or functions into any corridor space of campus buildings or building leased by the University.
- Materials shall be stored, handled, and piled with due regard to their fire characteristics. Non-compatible materials, which may create a fire hazard, shall be segregated by a barrier having a fire resistance of at least one hour. Arrangement should permit convenient access for firefighting.
- Clearance shall be maintained around lights and heating units to prevent ignition of combustible materials.
- Stacked materials shall have minimum clearance of 18 inches between the top of the stack and the sprinkler system piping and deflectors.
- Material stack height shall not exceed 15 feet in non-sprinkled buildings.
- Stacks shall have a maximum of 36 inches clearance between the top of the stacks and joists, rafter, or roof trusses.
- The maximum weight of materials stored on building floors or load carrying platforms, except those built directly on the ground, shall not exceed their safe carrying capacity.
- In warehouse-type storage areas, the following rules apply:
 - Aisles and passageways for one-way fork lift traffic shall be not less than the width of the widest vehicle or load plus three feet. For two-way fork lift traffic the minimum width of aisles shall be not less than twice the width of the widest vehicles or loads plus three feet.
 - Lanes for aisles and passageways shall be painted on the floor, or a similar method employed to mark such areas.
 - Black, white or combination of these two shall be the basic colors of the designation of traffic and housekeeping markings.

- Combustible rubbish, oily rags, or waste material, when kept within the building or adjacent to a building, shall be securely stored in metal or metal-lined receptacles equipped with tight fitting covers or in rooms or vaults constructed of non-combustible materials.
- Combustible storage shall not be allowed in attic or similar spaces.

6.4 **Loose Material Storage**

- Materials dumped against walls or partitions shall not be stored to a height that will endanger the stability of such walls and partitions.
- Employees shall not be permitted to work on or over loose material, until they have been instructed in the hazards involved and the precautions that must be taken to prevent employees being caught in caved-in material.

6.5 **Outdoor Storage**

- Combustible materials shall be piled with due regard to the stability of piles and in no case higher than 20 feet.
- Driveways between and around combustible storage piles shall be at least 15 feet wide, and maintained free from accumulation of rubbish, equipment or other materials.
- The entire storage site shall be kept free from accumulation of unnecessary combustible materials. Weeds and grass shall be kept down and a regular procedure provided for the periodic cleanup of the entire area. Storage shall be in orderly and regular piles. Combustible material shall not be stored outdoors within 10 feet of a building or structure.
- Portable fire extinguishing equipment, suitable for the fire hazard involved, shall be provided at convenient, conspicuously accessible locations in the yard area.

7.0 SHOP SAFETY

The hazards associated with shop work require special safety considerations. Whether you work in a metal shop, wood shop, automotive shop, glass shop, or electrical shop, the potential hazards for personal injury are numerous. This chapter highlights essential safety information for working in a TAMUCC shop. Refer to other chapters in this manual, including General Safety, Electrical Safety, and Fire/Life Safety, for more information on handling many shop situations. The following table highlights common shop hazards:

<table>
<thead>
<tr>
<th>Potential Hazards</th>
<th>Hazard Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical:</td>
<td></td>
</tr>
<tr>
<td>- Compressed air/gases</td>
<td>- Oxygen, acetylene, air</td>
</tr>
<tr>
<td>- Flying debris</td>
<td>- Grinders, saws, welders</td>
</tr>
<tr>
<td>- Noise</td>
<td>- Any power tool</td>
</tr>
<tr>
<td>- Pinching, cutting, amputation</td>
<td>- Vises, power tools, hand tools</td>
</tr>
<tr>
<td>- Slipping, tripping</td>
<td>- Wood/metal chips, electrical cords, oil, etc.</td>
</tr>
<tr>
<td>- UV radiation</td>
<td>- Welding</td>
</tr>
<tr>
<td>Electrical:</td>
<td></td>
</tr>
<tr>
<td>- Overload</td>
<td>- Too many cords per outlet</td>
</tr>
<tr>
<td>- Fire</td>
<td>- Frayed, damaged cords</td>
</tr>
<tr>
<td>- Shock</td>
<td>- Ungrounded tools, equipment</td>
</tr>
<tr>
<td>Fire:</td>
<td></td>
</tr>
<tr>
<td>- Flammable chemicals</td>
<td>- Gasoline, degreasers, paint thinners, etc.</td>
</tr>
<tr>
<td>- Sparks</td>
<td>- Welders, grinders</td>
</tr>
<tr>
<td>- Static sparks</td>
<td>- Ungrounded tools or solvent containers</td>
</tr>
<tr>
<td>- Uncontrolled fire</td>
<td>- Lack of appropriate fire extinguishers or sprinkler system</td>
</tr>
<tr>
<td>Chemical:</td>
<td></td>
</tr>
<tr>
<td>- Toxic liquids</td>
<td>- Cleaning solvents, degreasers, etc.</td>
</tr>
<tr>
<td>- Toxic fumes, gases, dusts</td>
<td>- Welding, motor exhaust, etc.</td>
</tr>
</tbody>
</table>
7.1 **Shop Safety Rules**

- Personnel shall not be permitted to operate any machinery until they have been instructed as to the hazards and the proper operation of such equipment and the use of protective devices.
- All containers must be labeled with its contents.
- Aisles shall be of sufficient width to permit the unobstructed and safe passing of personnel, trucks, or material. Where practicable, lines shall be painted on the floor or some similar method shall be employed to mark aisles.
- Ensure that there is adequate ventilation to prevent exposure from vapors of glues, lacquers, paints and from dust and fumes.
- During working periods each working area, operation, or process shall be adequately lighted and harmful glare minimized.
- Tools, machines, devices, or other equipment that are hazardous because of defects or other conditions shall not be used until suitably repaired.
- Areas around machines should be kept clear of obstructions and of non-slippery condition. Spilled oil or grease shall be cleaned up immediately. Remove sawdust, wood chips, and metal chips regularly.
- Do not clean chips from the surface of machines with compressed air or with hands; a brush or hook should be used. When general cleaning of machines and equipment by compressed air is considered necessary, the outlet pressure should be reduced to not more than 10 psi by means of a regulator or pressure reducing control nozzle designed for this purpose.
- Cleaning of one’s clothes with compressed air is prohibited.
- When using portable electrical equipment around machine tools, keep electrical cords clear of moving parts.
- Double-insulated tools or those with three-wire cords are essential for safety.
- It is recommended that electrical cords pull down from an overhead pulley rather than lying on the floor. Use extension cords that are large enough for the load and distance.
- Do not place hand tools on machines. Keep them in their assigned location.
- Loose flowing or torn clothing, gloves, neckties, long sleeves, rings or bracelets shall not be worn around machinery such as band and circular saws, drill presses, grinders, joiners and planers, lathes, and sanders. Snug-fitting clothing shall be worn.
- Goggles or face shields shall be worn when grinding or when there is danger of flying particles.
- Gloves are not to be worn around rotating machinery unless sharp or rough materials are being handled. If gloves are worn great care should be exercised to prevent their being caught in the machinery.
- Gear and belt guards must be in place before a machine is operated. Guards on machines are to be properly adjusted and in working order before starting the machine. Machine guards must be kept in position at all times unless removal is authorized for repairs or cleaning.
• Be sure all is clear before starting any machine.
• Unless conditions make it impractical, no employee should be permitted to operate electric or mechanical equipment or machines in a building or room when alone.
• Dull, badly set, improperly filed or improperly tensioned saws shall be removed from service immediately as soon as they begin to cause the material to stick, jam, or kick back when it is fed to the saw at normal speed. A saw to which gum has adhered shall be cleaned immediately.
• A push stick made of a narrow strip of wood or similar material, with a notch in one end and shaped on the other end to provide a good hand grip, shall be used to push material through saws where there is possibility of the operator's fingers coming in contact with blades. A jig or fixture shall be used when cutting or forming irregular pieces or oblique angles.
• Projecting keys, set screws, and other projections in revolving parts shall be made flush or as guarded as practicable by a substantial metal cover as practicable.
• Power saws shall be guarded underneath and behind the table to prevent possible personal contact. A mechanical or electrical power control shall be provided on each machine which will make it possible for the operator to cut off the power from the machine without leaving his position at the point of operation.
• Do not repair, oil, or clean machinery while it is in motion. Lubrication while machinery is in motion shall be done by remote control lubricating system.
• Do not use electrical equipment or machines with frayed or otherwise deteriorated insulation. Electrically driven portable machinery as well as fixed electrical equipment shall have the frame grounded.
• Machines designed for a fixed location shall be securely anchored to prevent walking or moving.
• Foot protection required where there is reasonable possibility of dropping heavy objects. Footwear which is defective or inappropriate to the extent that ordinary use creates the possibility of foot injury (open toed sandals or tennis shoes) shall not be worn in shop areas.
• Do not attempt to remove foreign objects from the eye or body; obtain proper medical treatment.
• Know where fire extinguishers are located and how to use them.
• Leave all tool and equipment guards in place and utilize all shielding on tools and equipment.
• Always use flashback arrestors on cutting/welding torches and wear infrared safety goggle when appropriate.
• Report ALL injuries to your supervisor.

7.2 Band Saw Safety
• Adjustable guards should be kept as close over the point of operation as the work permits.
• When a band breaks - shut off the machine and stand clear until the
Circular Saw Safety

- Never stop a machine by pushing material against the band.
- Cracked saw blades should not be used.
- Set the blade evenly with the proper amount of tension.
- Keep your hands on either side of the cut line. Never reach across the cut line for any reason.
- Do not stand to the right of the band saw.
- Be sure the radius of your cutting area is not too small for the saw blade.
- If you hear a rhythmic click, check the saw blade for cracks.

7.3 Drill Press Safety

- When drilling, tapping, or reaming material, see that it is securely fastened by discs or clamps, so that it cannot spin. In no case should the operator rely on his hand to secure the material from turning.
- After tightening drill or chuck of drill press remove release key before starting the machine.
- Run the drill only at the correct speed. Forcing or feeding too fast may cause broken drills and result in serious injury.
- An operator should never attempt to loosen the chuck of a tapered shank drill unless the power is turned off.
- Use a center punch to score the material before drilling.
- Lower the spindle before removing a chuck.
- Never use a regular auger bit in a drill press.
- Frequently back the drill out of deep cuts to clean and cool the bit.
- When chucks are being removed from the spindle, the spindle should be lowered close to the table so the chuck will not fall.
- Never use the hands to remove work from the drill.

7.4 Circular Saw Safety

- Stand to one side. Do not stand directly in line with work being fed through saw.
- A ripsaw shall not be used for cross cutting nor shall a crosscut saw be used for ripping.
- See that saw blade is in good condition before using. This means sharp, unbroken, free from cracks, and the proper size.
- Never reach over the saw to obtain material.
- Never oil the saw or change the gauge while the machine is running.
- When shutting off power, never stop the saw quickly by thrusting a piece of wood against it. Be sure the saw has stopped before leaving the table.
- A pusher stick shall be used when the size or shape of the piece requires the hands to be near the blade of the saw.
- The appropriate guards must be kept in place at all times.
- Speed of Saw: The peripheral speed of circular saws shall not exceed 12,000 feet per minute unless the saw has been manufactured for a higher speed and is so marked.
- Do not raise the saw any higher than absolutely necessary.
• Fasten a clearance block to the fence when cutting off short pieces.
• Never attempt to clear away scraps with your fingers.
• Do not cut thin tubular materials with a circular saw.
• Ensure that the fence is not in the cut line of the saw.
• Take care when working with warped or twisted lumber.

7.5 Radial Arm Saw Safety
• Push the saw blade against the stop before turning on the power.
• Never place one piece of wood on top of another when using this saw. The top piece may kick over.
• This saw pulls itself into wooden materials. It may be necessary to hold the saw back to prevent it from choking.
• Never leave the saw hanging over the end of the arm.

7.6 Table Saw Safety
Follow these guidelines when working with table saws:

ONLY SAW STOP BRAND TABLE SAW SHALL BE USED AT TEXAS A&M UNIVERSITY-CORPUS CHRISTI.

7.7 Jointer and Planer Safety
• Stand to one side. Do not stand directly in line with work being fed through the machine.
• When pieces shorter than 18 inches are machined, a safety pusher stick of suitable design shall be used.
 - Do not take too heavy a cut as this will cause a kickback.
 - Ensure that jointers are equipped with cylindrical cutting heads.
 - Use a push stick, as necessary.
 - Do not use single cutter knives in shaper heads.
 - Ensure that knives are balanced and correctly mounted.
 - Adjust cut depth before turning the machine on.
 - Do not use the jointer for strips that are less than 1 inch wide.
 - Examine wood for knots and other defects before placing it in the planer.
 - Do not plane against the grain of the wood.
 - Let go of the materials as the feeder rolls catch. Do not follow the work with your hands.
 - Do not run boards that are more than 2 inches shorter that the distance between the in-feed and out-feed rolls.
 - Use a push stick if a board stops with its end on the in-feed table. If a board sticks under the cutter head, turn off the machine to keep from burning the cutter knives.

7.8 Grinding Safety
• Abrasive-wheel machinery shall be equipped with protection hoods,
which shall be designed and constructed to effectively protect the user from flying fragments of a bursting wheel insofar as the operation will permit.

- Wear a face shield, safety goggles, or cover goggles when grinding.
- Grinding wheels shall be equipped with tool rests, which are set not more than 0.125 inch from the wheel.
- The side of an emery wheel shall not be used for grinding unless it is a special type wheel for that PURPOSE.
- Stand to one side when starting up a machine and do not exert great pressure on the wheel until it is at full speed.
- Report to your supervisor immediately any broken, cracked, or other wheel defects.
- Mounting a new wheel should be done only by an experienced person.
- Never use a wheel that has been dropped or has received a heavy blow, even though there is no apparent damage. The wheel may be weakened to a point where it may fly apart when used.

- An abrasive wheel shall not be operated at a speed in excess of that recommended by the manufacturer of the wheel.
- Ensure that no combustible or flammable materials are nearby that could be ignited by sparks from the grinder wheel.
- Ensure that a guard covers at least 270 degrees of the grinding wheel on bench-mounted machines.
- Allow the grinder to reach full speed before stepping into the grinding position. Faulty wheels usually break at the start of an operation.
- Unless otherwise designed, grind on the face of the wheel.
- Use a vise-grip plier or clamp to hold small pieces.
- Slowly move work pieces across the face of wheel in a uniform manner. This will keep the wheel sound.
- Do not grind non-ferrous materials.
- Periodically check grinder wheels for soundness. Suspend the wheel on a string and tap it. If the wheel rings, it is probably sound.
- Replace a wheel that is badly worn or cracked.
- Before using a new wheel, let it run a few seconds at full speed to make sure it is balanced.

7.9 Lathe Safety

- A chuck or faceplate should never be put on a lathe by power operation.
- Make sure that all gear and belt guards are in place.
- Keep hands off chuck rim when lathe is in motion.
- Do not attempt to adjust a tool while the lathe is running.
- Never apply a wrench to revolving work or parts.
- Always use a brush to remove chips – never the hands.
- After adjusting the chuck remove the chuck wrench.
Follow these safety guidelines when working with wood lathes:

- Examine wood for knots and other defects before placing it in the lathe. Use caution when working with wood that has knots.
- Ensure that glued materials are set before placing them in the lathe.
- Before turning the lathe on, slowly turn rough materials a few times to ensure they will clear the tool rest.
- Keep hands off the chuck rim when the lathe is moving.
- Hold all wood cutting tools firmly with two hands.
- Start all jobs at the lowest speed. Ensure that materials are in a cylindrical form before advancing to higher speeds. Never turn large diameter materials at a high speed.
- Firmly screw faceplate work to the faceplate. Take care to avoid cutting too deep and hitting the screws.
- Do not cut too deep or scrape too long.
- Remove the "T" rest when sanding or polishing.

Follow these safety guidelines when working with metal lathes:

- Make sure that all gear and belt guards are in place.
- Never leave a chuck wrench in a chuck.
- Keep your hands off chuck rims when a lathe is in operation.
- Do not attempt to screw the chuck onto the lathe spindle with the power on, as it may get cross-threaded and cause injury. Stop the machine, place a board under the chuck, and then screw on by hand.
- Steady rests should be properly adjusted to conform to the material being worked on.
- When filing work in a lathe, always face the head stock and chuck.
- See that tailstock, tool holder, and work are properly clamped before turning on power.
- Never attempt to adjust a tool while the lathe is running.
- Never apply a wrench to revolving work or parts.
- Always use a brush to remove chips; never your hands.
- When possible, use pipe sleeves to cover work protruding from the end of the lathe.
- Before removing your work from the lathe, remove the tool bit.

7.10 **Sander Safety**

- Belt sanders shall have both pulleys and the unused run of the sanding belt enclosed. Rim guards will be acceptable for pulleys with smooth
disc wheels provided that on-running nip points are guarded. Guards may be hinged to permit sanding on the pulley.

- Disc sanders shall have the periphery and back of revolving disc guarded, and the space between revolving disc and edge of table shall not be greater than one-quarter inch.
- Do not push the work against the sander surface with excessive force as this may cause it to be thrown. Always wear eye protection.
- Ensure that sanding belts are not too tight or too loose. Never operate a sanding disk if the paper is too loose.
- Use the correct grade of abrasive material.
- Ensure that the distance between a circular sander and the edge of the table is not greater than 1/4 inch.
- Do not push materials against sanders with excessive force.
- Sand only on the down stroke side of a disk sander.
- Do not hold small pieces by hand. Use a jig for pieces that are difficult to hold securely.

7.11 Kiln Safety Procedure

- Metal pouring is a particularly hazardous operation due to the possible presence of impurities in the molds, ladles, pouring troughs, or the metal itself, which could cause “spluttering.”
- Ceramic kiln brick and other ceramic objects hold heat for a long time without visual effect. Always wear gloves when handling them.
- Individuals operating metal melting furnaces or kilns must be provided with and required to wear approved eye shield, protective gloves and aprons. Bare flesh should not be exposed during the pouring or removal of heated items.
- The appropriate class fire extinguisher shall be immediately available in the kiln area in the event of fire.

7.12 Nail and Air guns safety

Nail guns and air guns are powered by compressed air. The main danger associated with pneumatic fastening tools is injury from one of the tool’s attachments or fasteners.

- Ensure that pneumatic tools which shoot nails, rivets, or staples are equipped with a device that keeps fasteners from ejecting unless the muzzle is pressed against a firm surface.
- Never point a tool at items you do not want to fasten.
- Keep your finger off the trigger until you are ready to begin work. Most pneumatic tools have a hair-trigger that requires little pressure to activate the gun.
- Treat air hoses with the same care as an electrical cord.
- Do not drive fasteners into hard, brittle surfaces or areas where the fastener may pass through the material and protrude on the other side.

7.13 Planer Safety
- Examine wood for knots and other defects before placing it in the planer.
- Do not plane against the grain of the wood.
- Let go of the materials as the feeder rolls catch. Do not follow the work with your hands.
- Do not run boards that are more than 2 inches shorter that the distance between the in-feed and out-feed rolls.
- Use a push stick if a board stops with its end on the in-feed table. If a board sticks under the cutter head, turn off the machine to keep from burning the cutter knives.

7.14 Forging Machines Safety
- Once punchers, shears, and benders are activated, it is impossible to stop them until the end of a cycle. Use extreme care when working with these tools.
- Inspection and maintenance: All forge shop equipment must be maintained in a condition which will ensure continued safe operation.
- Hammers and presses: All hammers must be positioned or installed in such a manner that they remain on or are anchored to foundations sufficient to support them according to applicable engineering standards.
- Hammers: Die keys and shims must be made from a grade of material that will not unduly crack or splinter.
- Presses: All manually operated valves and switches must be clearly identified and readily accessible.
- Power-driven hammers: Every steam or air hammer must have a safety cylinder head to act as a cushion if the rod should break or pull out of the ram.
- Gravity Hammers: Air-lift hammers must have a safety cylinder head.
- Forging and trimming presses: When dies are being changed or maintenance is being performed on the press, ensure the following:
 - The power to the press is locked out.
 - The flywheel is at rest.
 - The ram is blocked with a material of the appropriate strength.
 - Upsetters: All upsetters must be installed so that they remain on their supporting foundations.
7.16 **Welding, Cutting, grinding, and any process that generate heat**

Welding and cutting are two forms of hot work that require special safety considerations. Unless they are done in a designated shop area, welding and cutting are strictly prohibited without proper authorization. Refer to Hot Work Permitting Policy through Environmental, Health and Safety.

- Before conducting welding or cutting operations, inspect your equipment for the following:
 - Welding leads must be completely insulated and in good condition.
 - Check all other cords for frays and damages.
 - Cutting tools must be leak-free and equipped with proper fittings, gauges, regulators, and flashback devices.
 - Oxygen and acetylene tanks must be secured in a safe place.

- In addition, follow these guidelines for most welding and cutting procedures:
 - Conduct welding and cutting operations in a designated area free from flammable materials. When welding or cutting is necessary in an undesignated or hazardous area, request a hot work permit from E,H&S.
 - Periodically check welding and cutting areas for combustible atmospheres.
 - Take care to prevent sparks from starting a fire.
 - Remove unused gas cylinders from the welding and cutting area.
 - Keep hoses out of doorways and away from other people. A flattened hose can cause a flashback.

- The following table provides an overview of welding and cutting hazards:

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>PNA/PAC Air Carbon Arc Processes</th>
<th>SMAW SAW GMAW FCAW</th>
<th>SAW</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>X-ray exposure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Toxic fumes and gases</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Heat, fire and burns</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Noise</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

✓ indicates no hazards, ✓ indicates hazard present. (✓) indicates hazard present if SAW flux is absent.
Proper selection of personal protective equipment is very important when welding; make sure your welding helmet visor is dark enough to provide adequate protection. Wear fireproof apron and gloves. In addition, take care to protect other people from the hazards of welding. For example, use a welding curtain to protect other employees from UV radiation.

There are three types of welders:

- **AC welders:** These welders are used for standard welding procedures, AC welders are powered by an electrical cord.
- **DC welders:** These are portable welders that are commonly used in manholes. DC welders have their own power supply.
- **Wire-feed welders:** These welders use inert gas for light metal work (e.g., stainless steel, aluminum, etc.).

Common hazards associated with welding include the following:
- Electrocution
- Burns
- UV radiation exposure
- Oxygen depletion
- Sparking

In addition to the general guidelines for welding and cutting, follow these specific guidelines for safe welding operations:

- Make sure the welding area has a non-reflective, noncombustible surface.
- Ensure that adequate ventilation and exhaust are available.
- Be aware of electrocution hazards, particularly in damp conditions.
- Be sure that electrical cords are properly grounded. It is advisable for cords to pull down from an overhead pulley.

7.17 Cutting Guidelines

Gas welding and cutting tools are often powered by oxygen or acetylene gas cylinders. These tanks require special safety precautions to prevent explosions and serious injuries. Follow the safety guidelines below, and refer to the Laboratory Safety chapter in this manual for more information on gas cylinder safety.
- Ensure that acetylene/oxygen systems are equipped with flame or flashback arrestors attached to the regulators.

- Store acetylene bottles upright and secured.

- Keep cylinder fittings and hoses free from oil and grease.

- Repair or replace defective hoses by splicing. Do not use tape.

- Do not tamper or attempt to repair cylinders, valves, or regulators.

- Do not interchange regulators or pressure gauges with other gas cylinders.

- Carefully purge hoses and torches before connecting a cylinder.

- Set acetylene pressure at or below 15 psi. Always use the minimum acceptable flow rate.

- Never use a match to light a torch. Use an approved lighter.

- Welding and cutting are done on an ever increasing variety of metals and metal coatings. Four primary hazards are associated with welding operations: ultraviolet and infrared light, oxides of nitrogen, ozone, and metal fumes.

- Before cutting or welding is permitted the area shall be inspected by the individual responsible for authorizing cutting and welding operations. Cutting or welding shall be permitted only in areas that are, or have been made, fire safe. Where objects to be welded or cut are not readily movable, all movable fire hazards in the vicinity shall be taken to a safe distance.

- Where objects to be welded or cut are not movable and where fire hazards cannot be removed, then guards shall be used to confine the heat, sparks, and slag, and to protect the immovable fire hazards and nearby personnel.

- Suitable fire extinguishing equipment shall be immediately available in the work area and shall be maintained in a state of readiness for instant use. It may be necessary to assign additional personnel to guard against fire while the actual welding is being performed, and for a sufficient period of time after completion of the work to ensure that no possibility of fire exists.

- No welding, cutting or other hot work shall be performed on used drums, barrels, tanks or other containers until they have been cleaned so thoroughly as to make absolutely certain that there are no flammable materials present which, when subjected to heat, might produce flammable or toxic vapors.
- Goggles or other suitable eye protection shall be used during all gas welding or cutting operations. Eye protection shall be provided where needed for brazing operations.

- Welders should wear flame resistant gauntlet gloves. Flame resistant aprons may be desirable as protection against radiated heat and sparks. Cotton clothing, if used, should be chemically treated to reduce its combustibility. All clothing should be free from oil or grease.

- Local exhaust systems providing a minimum air velocity of 100 linear feet per minute in the welding zone shall be used except where not feasible. Mechanical dilution ventilation sufficient to prevent exposures to concentrations of airborne contaminates from exceeding mandatory limits of Title 29 CFR, Part 1910.1000, Table 2; Permissible Exposure Limits (PEL) air contaminates.

- Respiratory protective equipment shall be used when ventilation is not feasible. If work place monitoring records clearly demonstrate that exposure levels are not exceeded, neither mechanical ventilation nor respiratory protective equipment is required.

- Local exhaust ventilation shall be used when potentially hazardous materials are employed as base metals, flux, coating, plating, or filler metals. These include, but are not limited to, the following materials:

 * Beryllium Lead
 * Cadmium Mercury
 * Chromium Zinc
 * Inert-gas metal-arc welding or oxygen cutting of stainless steel

- Where the work permits, the welder shall be enclosed with noncombustible screens having a low reflective finish. Booths and screens shall permit circulation of air at floor level. Workers or other persons adjacent to the welding areas shall be protected from the rays by non-combustible or flameproof screens or shields or shall be required to wear appropriate eye protection.

- When operations are suspended for any substantial period of time, such as during lunch or overnight, welding equipment shall be cut off.

- The frames of arc welding and cutting machines shall be grounded either through a third wire in the cable containing the circuit conductor or through a separate wire which is grounded at the source of the current.
- Arc welding and cutting cables shall be of the completely insulated, flexible type, capable of handling the maximum current requirements of the work in progress.

- Mixtures of combustible gases and air are very explosive and shall be carefully guarded against. No device or attachment facilitating or permitting mixture of air or oxygen with combustible gases prior to consumption, except at the burner or in a standard torch or blow pipe, shall be allowed unless approved for that purpose.

- The primary hazard associated with silver soldering is the inhalation of cadmium fumes. Silver solder generally contains 18% to 20% cadmium which is emitted as a fume when silver solder is heated. Silver soldering operations always should be conducted where local exhaust ventilation is available to remove the cadmium fumes, and also fluoride fumes, which may be emitted from the flux. Sometimes, if it is impractical or nearly impossible to provide exhaust ventilation, the worker should wear an approved respirator with a high efficiency particulate filter.

7.18 Hand Tool Safety

- Hand tools are non-powered tools. They include axes, wrenches, hammers, chisels, screw drivers, and other hand-operated mechanisms. Even though hand tool injuries tend to be less severe than power tool injuries, hand tool injuries are more common. Because people take everyday hand tools for granted, they forget to follow simple precautions for safety. The most common hand tool accidents are caused by the following:

 - Failure to use the right tool
 - Failure to use a tool correctly
 - Failure to keep edged tools sharp
 - Failure to replace or repair a defective tool
 - Failure to store tools safely

IMPORTANT: Use the right tool to complete a job safely, quickly, and efficiently.

- Follow these guidelines for general hand tool safety:
 - Wear safety glasses whenever you hammer or cut, especially when working with surfaces that chip or splinter.
 - Do not use a screwdriver as a chisel.
 - Do not use a chisel as a screwdriver.
 - Do not use a knife as a screwdriver.
 - Never carry a screwdriver or chisel in your pocket. If you fall, the tool could cause a serious injury. Instead, use a tool belt holder or tool box.
- Replace loose, splintered, or cracked handles. Loose hammer, axe, or maul heads can fly off defective handles.
- Use the proper wrench to tighten or loosen nuts.
- When using a chisel, always chip or cut away from yourself. Use a soft-headed hammer or mallet to strike a wooden chisel handle. A metal hammer or mallet may cause the handle to split.
- Do not use a wrench if the jaws are sprung.
- Do not use impact tools, such as chisels, wedges, or drift pins, if their heads are mushroom shaped. The heads may shatter upon impact.
- Direct saw blades, knives, and other tools away from aisle areas and other employees.
- Keep knives and scissors sharp. Dull tools are more dangerous than sharp tools.
- Iron or steel hand tools may cause sparks and be hazardous around flammable substances. Use spark-resistant tools made from brass, plastic, aluminum, or wood when working around flammable hazards.

- Improper tool storage is responsible for many shop accidents. Follow these guidelines to ensure proper tool storage:
 - Have a specific place for each tool.
 - Do not place unguarded cutting tools in a drawer. Many hand injuries are caused by rummaging through drawers that contain a jumbled assortment of sharp-edged tools.
 - Store knives or chisels in their scabbards.
 - Hang saws with the blades away from someone's reach.
 - Provide sturdy hooks to hang most tools on.
 - Rack heavy tools, such as axes and sledges, with the heavy end down.

- Hand tools shall be maintained in a safe condition free of worn or defective parts.

- Tools shall be restricted to the use for which they are intended, and should be used only by employees.
- Tools having mushroomed heads, split or defective handles, worn parts, or other defects that impair their strength or render them unsafe for use shall be removed from service and shall not be reissued until the necessary repairs have been made.
- Goggles shall be worn by persons using hand tools when there is a possibility of flying chips or other materials.
- Listed below are some condition requirements for specific hand tools:
- The head of a hammer shall be wedged securely and squarely on the handle and neither the head nor the handler shall be chipped or broken.

- Files or rasps shall be equipped with a secure fitted, substantial handle.

- Care shall be taken to select a screwdriver of the proper size to fit the screw. Screwdrivers with a split or splintered handle shall not be used. The point shall be kept in proper shape with a file or grinding wheel, and the screwdriver shall not be used as a substitute punch, chisel, nail putter, etc.

- Only wrenches in good condition shall be used: a bent wrench, if straightened, has been weakened and shall not be used. Also watch for sprung jaws on adjustable wrenches. Always pull toward you, never push, since it is easier to brace against a sudden lunge forward should the tool snap or break.

- Pliers shall be kept free from grease and oil and the teeth or cutting edges shall be kept clean and sharp. The fulcrum pin, rivet or bolt shall be snug but not tight.

- Only saws that are sharp and properly set shall be used. A crosscut saw shall be used for cutting across the grain; a rip saw for cutting with the grain.

- Hacksaws should be adjusted in the frame snug and tight enough to prevent buckling. The number of teeth per inch should be selected for the work. Pressure should be on the down stroke only.

- Wrecking bars and crowbars shall be kept sharpened and free from burrs.

- Shovels shall be inspected by the worker before use to ensure that they have a strong, smooth handle and grip free from splinters, and that the blades are smooth and sharp.

7.19 Powered Tools
 - Portable power tools shall be kept cleaned, oiled and repaired. They shall be carefully inspected before use. The switches must operate properly and the cords should be clean and free from defects. The plug shall be clean and sound.
 - Portable powered tools capable of receiving guards and/or designed to accommodate guards shall be equipped with guards to prevent the operator from having any part of his body in the danger zone during the operating cycle.
- Electric powered portable tools with exposed conducting parts shall be grounded by an approved system of double insulation, or its equivalent. Where such an approved system is employed the equipment shall be distinctly marked.
- Hand-held powered tools of a hazardous nature such as circular saws having a blade diameter greater than two inches, chain saws, percussion tools, drills, topers, fasteners, drivers, grinders with wheels greater than two inches in diameter, disc sanders, belt sanders, reciprocating saws, saber scroll, and jig saws with blade shanks greater than one-fourth inch, and other similarly operating powered tools shall be equipped with a constant pressure switch or control that will shut off the power when the pressure is released. Other than circular saws, chain saws, and percussion tools, these tools may have a lock-on control provided that turnoff can be accomplished by a single motion of the same finger or fingers that turn it on. All other less hazardous hand-held powered tools, such as routers, may be equipped with a positive “on-off” control.
- Portable circular saws having a blade diameter over two inches, shall be equipped with guards or hoods which will automatically adjust themselves to the work when the saw is in use, so that none of the teeth are exposed to contact above the work; and when withdrawn from the work, the guard shall completely cover the saw to at least the depth of the teeth. The saw should not be used without a shoe or guide.
- Pneumatic powered portable tools shall be equipped with an automatic air shut-off valve that stops the tool when the operator’s hand is removed. Safety clips or retainers shall be installed on pneumatic tools to prevent tools from being accidentally expelled from the barrel; or other effective means to prevent accidents from this source shall be used.
- Abrasive wheels with a diameter over 2 inches shall be used only on machines provided with safety guards. The guard shall cover the spindle end, nut and flange projections. Guards on operations where the work provides a suitable measure of protection to the operator may be so constructed that the spindle end, nut and other flange are exposed.
- Explosive-actuated fastening tools muzzle ends shall have a protective shield or guard designed to confine any flying fragments or particles. The tool shall be so designed that it cannot be fired unless it is equipped with a protective shield or guard. A department shall not permit an employee to use a power-actuated tool until he has received training as prescribed by the manufacturer.
- Power tools can be extremely dangerous if they are used improperly. Each year, thousands of people are injured or killed by power tool accidents. Common accidents associated with power tools include abrasions, cuts, lacerations, amputations, burns, electrocution, and broken bones. These accidents are often caused by the following:
 - Touching the cutting, drilling, or grinding components
 - Getting caught in moving parts
- Suffering electrical shock due to improper grounding, equipment defects, or operator misuse
- Being struck by particles that normally eject during operation
- Touching hot tools or work pieces
- Falling in the work area
- Being struck by falling tools

- When working around power tools, you must wear personal protective equipment and avoid wearing loose clothing or jewelry that could catch in moving machinery. In addition to general shop guidelines, follow these guidelines for working with power tools:
 - Use the correct tool for the job. Do not use a tool or attachment for something it was not designed to do.
 - Select the correct bit, blade, cutter, or grinder wheel for the material at hand. This precaution will reduce the chance for an accident and improve the quality of your work.
 - Keep all guards in place. Cover exposed belts, pulleys, gears, and shafts that could cause injury.
 - Always operate tools at the correct speed for the job at hand. Working too slowly can cause an accident just as easily as working too fast.
 - Watch your work when operating power tools. Stop working if something distracts you.
 - Do not rely on strength to perform an operation. The correct tool, blade, and method should not require excessive strength. If undue force is necessary, you may be using the wrong tool or have a dull blade.

- Before clearing jams or blockages on power tools, disconnect from power source. Do not use your hand to clear jams or blockages, use an appropriate tool.
- Never reach over equipment while it is running.
- Never disable or tamper with safety releases or other automatic switches. When the chance for operator injury is great, use a push stick to move material through a machine.
- Disconnect power tools before performing maintenance or changing components.
▪ Keep a firm grip on portable power tools. These tools tend to "get away" from operators and can be difficult to control.

▪ Remove chuck keys or adjusting tools prior to operation.

▪ Keep bystanders away from moving machinery.

▪ Do not operate power tools when you are sick, fatigued, or taking strong medication.

▪ When possible, secure work pieces with a clamp or vise to free the hands and minimize the chance of injury. Use a jig for pieces that are unstable or do not lie flat.

▪ Inspect wiring and mechanisms before operating.

▪ All machinery repairs must be completed by a certified repair person.

7.20 Guards

▪ Moving machine parts must be safeguarded to protect operators from serious injury. Belts, gears, shafts, pulleys, fly wheels, chains, and other moving parts must be guarded if there is a chance they could injure an employee.

▪ Hazardous areas that must be guarded include the following:
 - Point of operation
 - Area where the machine either cuts, bends, molds, or forms, the material
 - Pinch/nip point: Area where moving machine parts can trap, pinch, or crush body parts (e.g., roller feeds, intermeshing gears, etc.).
 - Sharp edges
 - Stored potential energy

▪ There are three types of barrier guards that protect people from moving machinery. They consist of the following:
 - Fixed guards-a permanent machine part that completely encases potential hazards. Fixed guards provide maximum operator protection.

 - Interlocked guards-connected to a machine's power source. If the guard is opened or removed, the machine automatically disengages. Interlocking guards are often preferable because they provide adequate protection to the operator, but they also allow easy machine maintenance. This is ideal for problems such as jams.
- Adjustable guards- self-adjusting guards change their position to allow materials to pass through the moving components of a power tool. These guards accommodate various types of materials, but they provide less protection to the operator.

IMPORTANT: Guards must be in place. If a guard is removed to perform maintenance or repairs, follow lockout/tag-out procedures. Replace the guard after repairs are completed. Do not disable or move machine guards for any reason. If you notice that a guard is missing or damaged, contact your supervisor and have the guard replaced or repaired before beginning work.

NOTE: Hand-held power tools typically have less guarding in place than stationary power tools. Use extreme caution when working with hand-held power tools and always wear a face shield.

8.0 MISCELLANEOUS OPERATIONS

OPERATING PROCEDURES FOR CHANGING ALL BALLASTS

FOR AUTHORIZED PERSONNEL ONLY

<table>
<thead>
<tr>
<th>VOLTAGES: 120 or 277 Volts</th>
<th>PPE: or</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shut off power. Install LOTO, then follow part II of this procedure. You may skip step # 3 after installing LOTO.</td>
<td></td>
</tr>
<tr>
<td>LOTO DEVICES NEEDED: switch LOTO device, lock, tag</td>
<td></td>
</tr>
<tr>
<td>CAUTION: YOUR LIFE DEPENDS ON THIS LOCKOUT!</td>
<td></td>
</tr>
</tbody>
</table>

TOOLS:

1) Insulated wire stripper
2) 2-, 3-port connectors, or wire nuts
3) Fiberglass ladder (tall enough so you don’t have to reach up)
4) Voltmeter

If shutting off power is absolutely not possible nor feasible, follow every step of the following part I and II. When in doubt, consult your supervisor.

PART I
WARNING: YOU ARE ABOUT TO WORK WITH LIVE-ENERGY
PPE REQUIRED:
1) Eye protection
2) Flame resistant coverall
3) V-rated type 0 gloves
4) Leather protector

PART II

NOTE: TREAT ALL WIRES, EVEN DOWN OR BURNING ONES, AS IF THEY ARE ENERGIZED.
1) Check the surrounding to make sure it’s safe to work
2) Inspect PPE to ensure they are in good condition and don them on
3) Use volt meter to check for live circuit
4) Cut/strip ungrounded conductor (energized part) and cap it using 2-port connector or wire nut
5) Cut/strip grounded conductor (neutral) and cap them using 2-port connectors or wire nuts
6) Remove old ballast and install new one (complete retrofitting)
7) Connect grounded conductor (neutral)
8) Connect ungrounded conductor
9) Close plate, clean up area, and remove all debris.
XXIV. TOBACCO, SMOKE and E-VAPOR FREE ENVIRONMENT

1.0 UNIVERSITY PROCEDURE

34.05.99.C1: Tobacco, Smoke and E Vapor Free Environment
Approved February 20, 1996
Revised December 16, 2009
Revised March 28, 2011
Revised November 1, 2013
Next Required Review November 1, 2018
Supplements System Policy 34.05

Texas A&M University-Corpus Christi strives to maintain an environment that protects the health of each person while on the TAMU-CC campus. The use of tobacco products, smoking and/or simulated smoking material (e.g. E- cigarettes) is prohibited in University buildings, within 25 feet of doorways, residence facilities, University vehicles, outdoor venues, outdoor athletic events, semi-enclosed walkways including the campus “spine,” in all gazebos-(palapas), in the area surrounding the Early Childhood Development Center (from the curb to the building, inside the fenced area surrounding the building), and in the Hector P. Garcia memorial plaza.

1.1 The United States Surgeon General and the Environmental Protection Agency have determined the following:

- Breathing secondary smoke causes various diseases and allergic reactions in healthy non-smokers.
- Separating smokers and non-smokers within the same air space does not eliminate exposure to environmental tobacco smoke for non-smokers.
- Tobacco smoke and secondary tobacco smokes are Class A carcinogens. The EPA considers Class A Carcinogens as pollutants with adequate human data indicating the chemical causes cancer in people.
XXV. VEHICLE OPERATION

Operators of University equipment and vehicles are considered representatives of the University and should extend every courtesy to both traffic and pedestrians. Employees specifically authorized and who possess a valid Texas driver’s license may operate University owned vehicles on official business.

1.0 GENERAL INFORMATION
1.1 The following rules apply to the operation and storage of University vehicles:

- Drivers shall be familiar with and obey state motor vehicle laws that apply to them.
- A driver shall not permit unauthorized persons to drive, operate or ride in or on a University vehicle.
- The driver and all passengers shall use a seat belt at all times.
- Employees shall not permit anyone to ride on the running boards, fenders, or any part of motorized equipment except on the seats or inside the body walls.
- Employees shall not ride on loose materials or equipment carried on trucks, nor shall they ride on trailers.
- Employees shall not jump on or off vehicles in motion.
- Drivers shall keep a sharp lookout for persons and users of non-motorized devices on campus and be prepared for an immediate stop.
- Parking, storing, or repairing gasoline-fueled vehicles, motorcycles, mopeds or other similar devices shall not be allowed in any dwelling unit, office, exit way or location that would create a fire or life hazard.

1.2 The following rules apply to the condition of University vehicles:

- Windshields and windows shall be kept clear of anything that may obstruct the vision of the driver.
- Brakes shall be tested by the driver at the start of each day. The driver shall report all defects and they shall be adjusted or repaired before the vehicle is put in operation.
- Lights and other signaling devices shall be inspected daily. If they are found defective, they shall be repaired before the vehicle is placed in operation. No vehicle shall be operated at night unless equipped with working headlights, taillights, turn signals and other necessary safety devices as required by law.

1.3 The following rules apply to University vehicles when hauling items:

- Materials and equipment shall be loaded so they will not cause a hazard by shifting.
- Heavy equipment and materials shall be securely fastened.
- Red flags during the day and red lights at night shall be attached to
equipment or material that extends more than four feet beyond the back of the vehicle. Red flags or approved clearance lights shall be attached to loads extending more than two feet beyond the front of the vehicle.

- Tools, materials, or equipment shall not be permitted to extend beyond the permanent fixtures provided in the sides of the truck.
- Trailers or equipment, while being towed, shall be securely coupled to the truck, and the towing ball and towing hitch shall be compatible. For example, a vehicle with a 1 7/8” ball shall not tow a trailer with a 2” connector. At a minimum safety chains shall be 3/8” galvanized and shackled or securely hooked to the towing vehicles bumper or to a towing coupler.
- Trucks shall not be operated with tailgate hanging or dangling.
- Vehicles will not be operated unless back-up signals are operating.

2.0 ACCIDENTS AND ACCIDENT REPORTING

2.1 Obtain medical aid for the injured (if necessary).
- Call the University Police 361-825-4444 or law enforcement entity (911) for an investigation of the accident.
- If the accident is reported to a local law enforcement agency, the driver will need to obtain a copy of the accident report.
- Submit accident investigation results to your supervisor.
- Complete the TAMUS vehicle accident System form 9 and submit to UPD.

2.2 Accidents

If you are involved in a vehicle accident, follow these guidelines.

- All accidents involving students, visitors, tenants, and employees should be reported to the University Police Department (UPD) at ext. 4444 or 361-825-4444 on a cell phone. Medical emergencies will be handled by the UPD.
- If there are no injuries, you are blocking traffic, and your car can be driven, move the car to a safe location nearby. (If the accident occurs on a freeway lane, ramp, shoulder, median, or busy metropolitan street, you must move your car if it is safe and possible to do so.)

If you cannot move your car, try to warn oncoming traffic to prevent other accidents:

- Raise your hood.
- Turn on your hazard lights.
- Light flares.
Exchange the following information with other drivers involved in the accident:

- Name, address, and phone number
- Vehicle identification number, license number, and description
- Insurance information
- Driver's license number

Call the police in the following circumstances:

- Someone is injured.
- A car cannot be moved.
- A driver is intoxicated.
- A driver has no insurance.
- A driver leaves the scene of the accident without exchanging information.

3.0 NON-MOTORIZED TRANSPORTATION DEVICES

Non-motorized transportation devices encompass the following items: roller skates, rollerblades, bicycles, skateboards, longboards, and all other non-motorized transportation devices excluding disability-related (i.e., wheel chairs) or emergency response devices.

3.1 Users of non-motorized devices must yield to pedestrians when on or crossing a sidewalk or walking paths as pedestrians have the right of way.

3.2 The use of non-motorized devices may not be used inside any building, the Bay Side parking garage, along the north south oriented walkway from the University Center through Lee Plaza to the end of the walkway at Corpus Christi hall ("the spine") to include the covered sidewalks at the Center for the Arts and the University Service Center buildings. Students must dismount and walk or carry their devices when in these areas.

3.3 Bicycles, skateboards, longboards, scooters and any other non-motorized transportation devices may not be used or carried inside any building. Non-motorized transportation device must be parked only in designated racks or within student residences.

3.4 The use of non-motorized transportation devices in an unsafe manner and/or trick riding is prohibited. This includes, but is not limited to, riding on stairs, walls, rails, benches and other structures, as well as operating the device at an unsafe speed.

3.5 Operators of all non-motorized transportation devices do so at their own risk and liability. Helmets and other personal safety equipment are strongly
recommended for those using non-motorized transportation devices on campus.

3.6 It is recommended that all non-motorized transportation devices be registered with University Police.

3.7 Failure to follow these requirements is cause for disciplinary actions.

3.8 Bicycle Safety
Each year there are 700 fatalities and 39,000 injuries among cyclists in the U.S. Cyclists must take precautions when driving on city and University streets.

- Follow these safety precautions when riding a bicycle:
 - Always obey traffic laws.
 - Stop at stop signs.
 - Ride in the correct direction on one-way streets.
 - Stop at railroad tracks when the warning signals are operating.
 - When riding with other cyclists, ride single file in traffic.
 - When bike lanes are available, use them. If bike lanes are not available, stay as far right as possible on the street pavement. Watch for opening car doors, sewer gratings, debris, etc. Ride on sidewalks only when necessary.
 - Use hand signals when turning or changing lanes.
 - Wear a helmet that is approved by ANSI or the Snell Memorial Foundation. (Head injuries account for 75% of all cycling fatalities.)
 - If riding at night, make sure your bicycle has head and tail lights, reflectors on the rear, front, spokes, and pedals. Wear bright, reflective clothing.
 - Do not take bicycles into TAMUCC buildings; park safely in the designated bicycle parking areas located throughout the campus.

4.0 MOTOR POOL SAFETY

4.1 The following rules apply to the use and repair of vehicle batteries.
- Battery charging installations shall be located in areas designated for this purpose.
- When charging batteries, the vent caps shall be kept in place to avoid electrolyte spray.
- Facilities for quick drenching of the eyes and body shall be provided within 250 feet of the battery area for emergency use.
4.2 When using jumper cables to start a second vehicle, follow these procedures to avoid either equipment damage or an explosion:

- It must be initially determined whether, both vehicles are negatively grounded, (the negative terminal is connected to the engine block or frame), or positively grounded.
- It must also be determined that both batteries have the same nominal voltage (6 or 12 volts). Do not mix these systems in any way as damage will occur.
- When both vehicles are negatively grounded (which most often is the case), connect the ends of one cable to the positive terminal of each battery. Then connect one end of the other cable to the engine block of the car being started. Do not make this final connection to the negative terminal of the weak battery. Disconnecting the batteries should be done by reversing this procedure.

4.3 The following rules apply to the fueling of vehicles and equipment:

- No internal combustion engine fuel tank shall be refilled with a flammable liquid while the motor is running.
- Filling shall be done in such a manner that likelihood of spillage is minimal. If a spill occurs:
 - Notify E,H&S of the spill and the approximate quantity. Every effort should be made to keep the spilled fuel from entering the storm water system.
 - The E,H&S Spill Response Team will arrive with a spill containment kit to cleanup the spill or request outside assistance.
 - Fuel tank caps shall be replaced before starting the engine.
 - A gasoline pump shall be provided to service the fuel tanks of gasoline engine driven equipment. A good metal-to-metal contact should be kept between fuel supply tank or nozzle of supply hose and the fuel tank
 - Open lights, open flames, or sparking or arching equipment except that which is an integral part of automotive equipment, shall not be used near fuel storage tanks or internal combustion engine equipment while being fueled with flammable liquids.
 - Smoking shall not be permitted at or near the equipment being fueled. Post a conspicuous sign in each fueling area stating: “NO SMOKING”
 - A dry chemical fire extinguisher with an ABC rating shall be in a location accessible to the fueling area.
4.4 The following apply to jacks and their use:
- The rated load shall be legibly and permanently marked on a prominent location on the jack by casting, stamping or other suitable means.
- Jacks shall be designed so that their maximum safe extension cannot be exceeded.
- In the absence of a firm foundation, the base of the jack shall be blocked. If there is a possibility of slippage of the cap, a block shall be placed between the cap and the load.
- Employees shall not enter the zone beneath a jack-supported load unless it has been effectively blocked or cribbed.
- Jacks requiring cleaning and lubrication, such as screw jacks, shall be properly cleaned and lubricated at regular intervals. The lubricating instructions of the manufacturer should be followed, and only recommended lubricants should be used.

4.5 The following rules apply to tire inflation:
- Tire inflation shall be accomplished by means of a clip-on chuck with a minimum 24-inch length hose to an in-line foot or hand valve, and gauge. A clip-on chuck an in-line regulator (factory preset at 40 psi maximum) or a restraining device may be used as an equivalent.
- Tire inflation control valves shall automatically shut off the air flow when the valve is released by the operator or be of the preset regulator type.
- A tire restraining device, such as a cage, rack or other effective method shall be used while inflating tires mounted on split rims or having retaining rings.
- EXCEPTION: While the wheel assembly is mounted on a vehicle, tire may be inflated without a restraining device, provided the remote control inflation equipment is used and all persons stay out of the danger area.

5.0 TRANSPORTING EMPLOYEES AND STUDENTS

5.1 Trucks, buses and other vehicles used regularly for the transportation of employees and students shall be constructed or accommodated for that purpose, and shall be equipped with adequate seats properly secured in place, and shall be protected on sides and ends to a height of 46 inches to prevent falls from the vehicle.

5.2 Motor vehicles used to transport employees and students shall be kept in good repair; this includes: lights, brakes, horn, mirrors, windshields, turn signals and any other equipment affecting passenger safety.

5.3 The number of employees or students transported in vehicles covered by this section shall be limited to the manufactures recommendation, and shall never exceed a number, which may endanger the safe handling of the vehicle or the safety of the passengers.

5.4 Every bus, conventional type or truck type, used to transport personnel that has an enclosed compartment capacity of seven or more shall have an emergency exit
other than the normal means of entrance.

5.5 Vehicle vans should not exceed 12 persons, eleven passengers plus the driver. Seatbelts must be worn by the occupants.

6.0 UTILITY VEHICLE OPERATING PROCEDURES

6.1 The following pieces of equipment are considered utility vehicles: Gators, Tractors, Mowers, and Four Wheel ATVs (Three Wheel ATVs are not included).

- This procedure provides guidelines for the use of Utility Vehicles and/or similar slow moving vehicles (SMV) on the campus of Texas A&M University-Corpus Christi. The intent is to enable operators to avoid situations that may compromise their safety and avoid damaging the vehicle or other property, as well as to promote a safer environment for students, faculty, staff, and visitors.

- STATEMENT OF PROCEDURE
 All members of the University community are covered by these procedures (students, staff, faculty and contractors/vendors). All operators of Utility Vehicles must meet the following criteria before operating a Utility Vehicle on property under the jurisdiction of Texas A&M University-Corpus Christi:
 - Possess a valid Texas driver’s license.
 - Know and adhere to the State of Texas motor vehicle laws.

- Safety
 - All original equipment safety features must be kept in good working order.
 - The following outlines procedures for the safe operation of Utility Vehicles:
 * Supervisors must monitor and document that all persons operating Utility Vehicles have been instructed in the safe operation of Utility Vehicles and have read the Utility Vehicles Operating Procedures Program.
 * Operators may not use cell phone or other electronic devices while the vehicle is in motion.
 * Utility Vehicles are not to be overloaded, i.e. carrying more passengers than seating provided or overloading the Utility Vehicles recommended carrying or load capacity.
 * SEAT BELTS MUST BE USED WHEN PROVIDED.
 * No one is permitted to ride on the running boards, fenders, or any part of the Utility Vehicle except the seats.
* All body parts—feet, legs, and arms shall be kept inside the Utility Vehicle while it is in motion, unless the operator is signaling for a turn.

* The MAXIMUM speed limit for Utility Vehicles off standard roadways is 10 mph (5 mph when pedestrians are present).

* Utility Vehicles may operate on University roadways, but must adhere to posted speed limits. Utility Vehicles must operate only on University campus/property. All Utility Vehicles should travel in the right hand lane, unless turning left.

* Pedestrians have the right-of-way on campus. Utility Vehicles must yield to pedestrians on sidewalks. SPEED IS TO BE REDUCED TO A MINIMUM (5 mph max.) WHEN DRIVING ALONG OR CROSSING SIDEWALKS SO AS TO AVOID ACCIDENTS WITH PEDESTRIANS.

* Utility Vehicle operators are to be diligent and pay particular attention to the needs of disabled persons, as limitations in vision, hearing or mobility may impair their ability to see, hear, or move out of the way of Utility Vehicles.

* Operators must park Utility Vehicles away from heavily traveled pedestrian areas.

* Operators are not to block the path, limit pedestrian access on walkways, nor park at entrances to buildings.

* Utility Vehicle operators are responsible for ignition keys for the period of time in which they are using the vehicle. Keys shall not be left in Utility Vehicle.

- Exiting the utility vehicle
 * Turn the key to “off” position
 * Engage brake
 * Remove the key

- Utility Vehicles are to be used for University business only.

- No Utility Vehicle shall be operated between dusk and dawn without properly working headlights, taillights and turn signals.

- The operator must report any accidents to the University Police Department and to the operator’s supervisor.

- All Utility Vehicles and trailers (pulled by Utility Vehicles) must have clearly displayed on the exterior of that Vehicle and any trailer towed the slow moving vehicle reflective triangle.

This is an example of the required Slow Moving Vehicle Reflective Triangle:
University owned Utility Vehicles are to be maintained in accordance with manufacturer’s specifications.

- Departments are responsible for keeping all original equipment and safety features in good working order.
- Modification or tampering with a Utility Vehicle governor is prohibited and is a violation of Federal Law.
- Privately owned Utility Vehicles are prohibited from operating on University property.
- Always wear your safety belt.

6.2 The safe operation of Utility Vehicles is paramount. Failure to follow this procedure, render common practices or courtesies, or follow rules of the road for the State of Texas, could result in citation, appropriate disciplinary action, and/or suspension of operator’s Utility Vehicles driving privileges.

7.0 GENERAL VEHICLE SAFETY

7.1 Motor vehicle accidents are the leading cause of death and crippling injury in the United States. Traffic safety laws are important components of vehicle safety, but the most important aspect of vehicle safety is the driver.

IMPORTANT: All TAMUCC employees who operate a motor vehicle for University business (whether a company vehicle, rental vehicle, or personal vehicle) must possess a valid driver’s license for their vehicle’s class.

7.2 The University Police Department is responsible for regulating moving vehicles on university property. To ensure driving safety, follow these driving practices:

- Never drink and drive. Driving while under the influence of alcohol or drugs is strictly prohibited.
- Obey all traffic laws, signs, and signals.
- Respond to dangerous driving conditions as appropriate.
- Maintain a safe distance between your car and any car in front of you. Allow at least one car length for each 10 MPH (e.g., three car lengths if you are driving 30 MPH).
- Keep your eyes moving to avoid fatigue, especially if you plan on driving for a long period.
- Always use your turn signal to indicate your intended action.
- Leave yourself an "out" by driving in the lane with a shoulder, driving in the middle lane of a multi-lane road, or following other vehicles at a safe distance.
- Safety belts must always be worn while in the vehicle.

8.0 DEFENSIVE DRIVING

8.1 By taking defensive driving courses, employees can promote driving safety and lower their insurance rates. The principles of defensive driving include the following:
- **Knowledge:** Know your vehicle and know the law.
- **Control:** Always maintain control of your vehicle. To improve your control, perform routine vehicle maintenance and respond to road conditions as appropriate.
- **Attitude:** Be willing to obey all laws and be willing to yield to all other vehicles and pedestrians.
- **Reaction:** Respond to driving conditions appropriately. Do not impede your reaction time by driving when tired or under the influence of alcohol or drugs.
- **Observation:** Be aware of potential accidents and take preventive measures. Always try to anticipate the actions of other drivers.
- **Common Sense:** Do not risk your safety to save time. Do not respond to rude or obnoxious drivers by violating traffic laws.

9.0 BACKING VEHICLES

9.1 Backing a large vehicle can be very difficult. Try to avoid backing whenever possible. If you must back a vehicle, follow these guidelines:
- Get out of the vehicle and inspect the area you want to back into.
- If possible, have someone outside help guide your vehicle into position.
- If your vehicle does not automatically sound a horn when in reverse, sound the horn once before moving backwards and back slowly and check your mirrors often.

10.0 RAILROAD CROSSINGS

10.1 Compared with other types of collisions, train/motor vehicle crashes are 11 times more likely to result in a fatal injury. On the average, there are more train-car fatalities each year than airplane crashes. Unfortunately, driver error is the principal cause of most grade crossing accidents. Many drivers ignore the familiar tracks they cross each day, and some drivers disregard train warning signals and gates.
10.2 All public highway-rail grade crossings are marked with one or more of the following warning devices:

- **Advance Warning Signs**: Advance warning signs indicate that a railroad crossing is ahead. These signs are positioned to allow enough room to stop before the train tracks.

- **Pavement Markings**: Pavement markings may be painted on the pavement in front of a crossing. Always stay behind the stop line when waiting for a passing train.

- **Crossbuck Signs**: Railroad crossbuck signs are found at most public crossings. Treat these signs as a yield sign. If there is more than one track, a sign below the crossbuck will indicate the number of tracks at the crossings.

- **Flashing Lights and Gates**: Flashing lights are commonly used with crossbucks and gates. Stop when the lights begin to flash and the gate starts to lower across your lane. Do not attempt to cross the tracks until the gate is raised and the lights stop flashing?

IMPORTANT: You must stop at least 15 feet from a train track when: (1) warning lights flash; (2) a crossing gate or flag person signals an approaching train; (3) a train is within 1500 feet of the crossing; or (4) an approaching train is plainly visible and in hazardous proximity.

10.3 Follow these guidelines when you encounter a railroad crossing:

- Always expect a train.
- Always be aware of your surroundings. When approaching a crossing, LOOK, LISTEN, and LIVE.
- Be sure all tracks are clear before you proceed. Remember, due to their large size, it is easy to misjudge the speed and distance of an oncoming train. If you have any doubts, stop and wait for the train to pass.
- Watch for vehicles, such as school buses and hazardous material transport vehicles that must stop before train tracks. Never race a train to a crossing.
- Always stop for flashing lights, bells, and gates. Never drive around a gate. (State law requires pedestrians to stop when a railroad crossing gate is down.)
- Do not allow yourself to be boxed in on a track with cars in front and behind you.
- Never stop on train tracks. If your car stalls on train tracks, call 911 immediately. If a train approaches, abandon the car and run away from the tracks.
- When driving at night, look low to the ground for moving trains. (One third of all train-car collisions occur at night when cars run into moving trains.)
- Watch out for a second oncoming train after the first train has passed.